Advertisement

Methods and Structure of Commutative Harmonic Analysis

  • V. P. Khavin
Part of the Encyclopaedia of Mathematical Sciences book series (EMS, volume 15)

Abstract

Many really significant “final” scientific achievements share the following two characteristics. First of all, they are sufficiently trivial, and, hence, can become of “common use”, i.e., necessary and conventional. Yet, by “conventional” here we, by no means, understand “lying on a surface.” Achievements, we are talking about, become trivial as a result of the development, which is itself far from trivial and, sometimes, even painful, and also, as a result of a frequent and wide use.

Keywords

Harmonic Analysis Fourier Series Singular Integral Operator Inversion Formula Convolution Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Akhiezer, N.I. Lectures on integral transforms. Kharkov Univ. Press, Kharkov, 1984, 120 pp., Zb1.546.44001. English trans].: Translations of Math. Monographs, 70, Am. Math. Soc., 1988Google Scholar
  2. [1]
    Benedetto, J.J. Spectral synthesis. Acad. Press, New York, 1975, 278 pp., Zb1. 364. 43001Google Scholar
  3. [1]
    Bochner, S. Lectures on Fourier integrals. Princeton Univ. Press, Princeton, 1959, 333 pp., Zb1. 85, 318Google Scholar
  4. [1]
    Bourbaki, N. Éléments de mathématique. Première partie. Livre VI. Intégration. Hermann, Paris, 1960, 105 pp., Zb1. 115. 49Google Scholar
  5. [1]
    Bremermann, H. Distributions, complex variables, and Fourier transforms. Addison-Wesley, Mass., 1965, 186 pp., Zb1. 151, 181Google Scholar
  6. [1]
    Brychkov, Yu. A., Prudnikov, A.P. Integral transforms of generalized functions. Nauka, Moscow, 1977, 287 pp. (Russian), Zb1. 464. 46039Google Scholar
  7. [1]
    Burkhardt, H. Trigonometrische Reihen und Integrale. Encyklopädie der Math. Wiss. II, I, (ii), Leipzig, 1904–1916, 398 pp.Google Scholar
  8. [1]
    Carleman, T. L’intégrale de Fourier et questions qui s’y rattachent. Almqvist Wikselsboktr., Uppsala, 1944, 119 pp., Zb1. 60, 255Google Scholar
  9. [1]
    Cooley, J.W., Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965), Zb1. 127, 90Google Scholar
  10. [1]
    Derkach, M.F., Gulitskij, T. Ya., Gura, B.M., Chaban, M.E. Dynamical spectra of speech signals. Minsk, 1984, 353 pp. (Russian)Google Scholar
  11. [1]
    Dieudonné, J.A. History of harmonical analysis. Istor.-Mat. Issled. 18, 31–54 (1973), (Russian), Zb1. 272. 01015Google Scholar
  12. [1]
    Dym. H., McKean, H.P. Fourier series and integrals. Acad. Press, New York, 1972, 295 pp., Zb1. 242. 42001Google Scholar
  13. [1]
    Ehrenpreis, L. Fourier analysis in several complex variables. Wiley Interscience Publ., New York, 1970, 506 pp., Zb1. 195, 104Google Scholar
  14. [1]
    Fourier, J.B. Théorie analytique de la chaleur. Paris, 1822, 155 pp.Google Scholar
  15. [1]
    Franks, L.E. Signal theory. Prentice Hall, New York, 1969, 317 pp. Zb1. 194, 503Google Scholar
  16. [1]
    Gel’fand, I.M. On Fourier transform formulae. Mat. Prosveshchenie 5,155–159 (1960) (Russian), Zb1. 147, 107Google Scholar
  17. [1]
    Gel’fand, I.M., Shilov, G.E. Generalized functions and operations with them. Fizmatgiz, Moscow, vol. 1, 1959, 470 pp., Zb1.91,111. English transi.: Academic Press, New York etc., 1964Google Scholar
  18. [1]
    Gel’fond, A.O. Calculus of finite differences. Fizmatgiz, Moscow, 1959, 400 pp. (2nd ed.), Zb1.47,332. German transl.: VEB Verlag d. Wiss., Berlin, 1958Google Scholar
  19. [1]
    Goodman, J W Introduction to Fourier optics. McGraw Hill, New York, 1968, 305 pp.Google Scholar
  20. [1]
    Gorelik, G.S. Vibrations and waves. Fizmatgiz, Moscow, 1959, 572 pp. (Russian)Google Scholar
  21. [1]
    Gross, K. On the evolution of noncommutative harmonic analysis. Am. Math. Mon. 85, No. 7, 525–548 (1978), Zb1. 396. 43001Google Scholar
  22. [1]
    Hardy, G.H. Divergent series. Oxford, 1949, 396 pp., Zb1. 32, 58Google Scholar
  23. [1]
    Hörmander, L. Linear partial differential operators. Springer-Verlag, Berlin, 1963, 285 pp., Zb1. 108, 93Google Scholar
  24. [2]
    Hörmander, L. The analysis of linear partial differential operators, vols. I-IV, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1983 (I, II), 1985 (III, IV), Zb1.521.35001, Zb1.521.35002, Zb1.601.35001, Zbl. 612. 35001Google Scholar
  25. [1]
    Jackson, D. Fourier series and orthogonal polynomials. Math. Assoc. Am., Oberlin, Ohio, 1941, 234 pp., Zb1. 60, 169Google Scholar
  26. [1]
    Kharkevich, A.A. Spectra and analysis. GITTL, Moscow, 1957, 236 pp. (Russian)Google Scholar
  27. [1]
    Khurgin, Ya.I., Yakovlev, V.P.Finitary functions in physics and technology. Nauka, Moscow, 1971, 408 pp. (Russian), Zb1. 245. 93001Google Scholar
  28. [1]
    Knuth, D.E. The art of computer programming. Vol. 2. Seminumerical algorithms. Addison-Wesley, Mass., 1969, 655 pp., Zb1. 191, 181Google Scholar
  29. [1]
    Levitan, B.M. Almost periodic functions. GISSL, Moscow, 1953, 396 pp. (Russian)Google Scholar
  30. [2]
    Levitan, B.M. A historical survey of the theory of almost periodic functions. Istor.-Mat. Issled. 25,156–166 (1980) (Russian), Zb1. 468. 01007Google Scholar
  31. [1]
    Lévy, P. Sur quelques problèmes actuellement irrésolus et sans doute insolubles dans les théories des séries et des intégrales de Fourier. J. Éc. Polytechn., III. Sér.145,179–194 (1939), Zb1. 25, 186Google Scholar
  32. [1]
    Luzin, N N. Integral and trigonometric series. GITTL, Moscow-Leningrad, 1951, 418 pp.(Russian)Google Scholar
  33. [1]
    Mackey, G.W. Harmonic analysis as the exploitation of symmetry - a historical survey. Rice Univ. Stud. 64, No. 2–3, 73–228 (1978), Zb1. 403. 43001Google Scholar
  34. [1]
    Mandelbrojt, S. Séries der Fourier et classes quasianalytiques des fonctions. Gauthier-Villars, Paris, 1935, 157 pp., Zb1. 13, 110Google Scholar
  35. [1]
    Natanson, I.P. Constructive function theory. M.-L.: GITTL, 1951, 688 pp. (Russian)Google Scholar
  36. [1]
    Nikol’skij, N.K. Invariant subspaces in operator theory and function theory. Itogi Nauki Tekh. Ser., Mat. Anal. 12, 199–412 (1974), Zb1.333.47003. English transi.: J. Soy. math. 5, 129–249 (1976)Google Scholar
  37. [1]
    Palamodov, V.P. Linear differential operators with constant coefficients. Nauka, Moscow, 1967, 487 pp., Zb1.191,434. English transi.: Grundlehren 168, Springer-Verlag, Berlin, 1970Google Scholar
  38. [1]
    Paplauskas, A.B. Trigonometric series from Euler to Lebesgue. Nauka, Moscow, 1966, 276 pp. (Russian), Zb1. 138, 286Google Scholar
  39. [1]
    Reed, M., Simon B. Methods of modern mathematical physics. II. Fourier analysis, selfadjointness. Academic Press, New York, 1975, 361 pp., Zb1. 308. 47002Google Scholar
  40. [1]
    Riemann, B. Gesammelte Mathematische Werke. Teubner, Leipzig, 1882, 558 pp.Google Scholar
  41. [1]
    Schwartz, L. Théorie générale des fonctions moyenne-périodiques. Ann. Math., II. Ser., 48, No. 4, 857–929 (1947)MATHCrossRefGoogle Scholar
  42. [2]
    Schwartz, L. Théorie des distributions. Tome I. Hermann, Paris, 1950, 148 pp., Zb1. 37, 73Google Scholar
  43. [3]
    Schwartz, L. Théorie des distributions. Tome II. Hermann, Paris, 1950, 148 pp., Zb1. 42, 114Google Scholar
  44. [1]
    Shilov, G.E. Mathematical analysis. Second special course. Nauka, Moscow, 1965, 327 pp., Zb1.97,36. English transi.: Pergamon Press, New York etc., 1965Google Scholar
  45. [1]
    Studies in Harmonic Analysis. Ash, J.M. (ed.): MAA Studies in mathematics. Vol 13, Washington, 1976, 215 pp., Zb1. 326. 00006Google Scholar
  46. [1]
    Szegö, G. Orthogonal polynomials. Am. Math. Soc., New York, 1959, 421 pp., Zb1. 89, 275Google Scholar
  47. [1]
    Taylor, C.A. The physics of musical sounds. Engl. Univ. Press, London, 1970, 112 pp.Google Scholar
  48. [1]
    Titchmarsh, E.C. Introduction to the theory of Fourier integrals. Oxford Univ. Press, 1937, 390 pp., Zb1. 17, 404Google Scholar
  49. [1]
    Vladimirov, V.S. Generalized functions in mathematical physics. Nauka, Moscow, 1976, 280 pp., Zb1.403.46036 (2nd ed. 1979, Zb1.515.46033). English transi.: MIR Publishers, Moscow, 1979Google Scholar
  50. [1]
    Weil, A. L’intégration dans les groupes topologiques et ses applications. Actual. Sci. Ind. 869, Hermann, Paris, 1940, 158 pp.Google Scholar
  51. [1]
    Wiener, N. The Fourier integral and certain of its applications. Cambridge Univ. Press, 1933, 201 pp., Zb1. 6, 54Google Scholar
  52. [1]
    Wiener, Norbert 1894–1964 Bull. Am. Math. Soc. 72, No. 1, part II (1966), 145 pp., Zb1. 135, 5Google Scholar
  53. [1]
    Yosida, K. Functionals analysis. Springer-Verlag, Berlin, 1965, 458 pp., Zb1. 126, 115Google Scholar
  54. [1]
    Yushkevich, A.P. Differential and integral calculus. In “Istoriya matematiki. Tom tretij. Matematika XVIII stoletiya”. Nauka, Moscow, 312–318 (1972) (Russian), Zb1.266.01014Google Scholar
  55. [1]
    Zaezdnyj, A.M. Harmonic synthesis in radio engineering and electrical engineering. Gosenergoizdat, Moscow-Leningrad, 1961, 536 pp., 1961Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • V. P. Khavin

There are no affiliations available

Personalised recommendations