The Stability of Matter: From Atoms to Stars pp 191-230 | Cite as

# Thomas-fermi and related theories of atoms and molecules

Chapter

## Abstract

This article is a summary of what is know rigorously about Thomas-Fermi (TF) theory with and without the Dirac and von Weizsacker corrections. It is also shown that TF theory agrees asymptotically, in a certain sense, with nonrelativistic quantum theory as the nuclear charge z tends to infiinity. The von Weizsacker correction is shown to correct certain undesirable features of TF theory and to yield a theory in much better agreement with what is believed (but as yet unproved) to be the structure of real atoms. Many open problems in the theory are presented.

## Keywords

Related Theory Nuclear Charge Electron Repulsion Neutral Case Atomic Case
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- Adams, R. A., 1975,
*Sobolev SPaces*(Academic, New York).MATHGoogle Scholar - Balazs, N., 1967, “Formation of stable molecules within the statistical theory of atoms,” Phys. Rev. 156, 42–47.ADSCrossRefGoogle Scholar
- Baumgartner, B., 1976, “The Thomas—Fermi theory as result of a strong-coupling limit,” Commun. Math. Phys. 47, 215— 219.Google Scholar
- Baxter, J. R., 1980, “Inequalities for potentials of particle systems,” Ill. J. Math. 24, 645–652.MathSciNetMATHGoogle Scholar
- Benguria, R., 1979, “The von Weizsacker and exchange cor-rections in Thomas—Fermi theory,” Ph.D. thesis, Princeton University (unpublished).Google Scholar
- Benguria, R., 1981, “Dependence of the Thomas—Fermi En-ergy on the Nuclear Coordinates,” Commun. Math. Phys., to appear.Google Scholar
- Benguria, R., H. Brezis, and E. H. Lieb, 1981, “The Thomas— Fermi—von Weizsacker theory of atoms and molecules,” Commas. Math. Phys. 79, 167–180.Google Scholar
- Benguria, R., and E. H. Lieb, 1978a, “Many-body potentials in Thomas—Fermi theory,” Ann. of Phys. (N.Y.) 110, 34–45.MathSciNetADSCrossRefGoogle Scholar
- Benguria, R., and E. H. Lieb, 1978b, “The positivity of the pressure in Thomas—Fermi theory,” Common. Math. Phys. 63, 193–218, Errata 71, 94 (1980).ADSGoogle Scholar
- Berestycki, H., and P. L. Lions, 1980, “Existence of station-ary states in nonlinear scalar field equations,” in
*Bifurcation Phenomena in Mathematical Physics and Related Topics*, edited by C. Bardos and D. Bessis (Reidel, Dordrecht), 269— 292. • See also “Nonlinear Scalar field equations, Parts I and II,” Arch. Rat. Mech. Anal., 1981, to appear.Google Scholar - Brezis, H., 1978, “Nonlinear problems related to the Thomas— Fermi equation,” in
*Contemporary Developments in Continu-um Mechanics and Partial Differential Equations*edited by G. M. de la Penha, and L. A. Medeiros (North-Holland, Am-sterdam), 81–89.Google Scholar - Brezis, H., 1980, “Some variational problems of the Thomas-Fermi type,” in
*Variational Inequalities and Complementarity Problems: Theory and Applications*edited by R. W. Cottle, F. Giannessi, and J-L. Lions (Wiley, New York), 53–73.Google Scholar - Brezis, H., and E. H. Lieb, 1979, “Long range atomic poten-tials in Thomas-Fermi theory,” Commun. Math. Phys. 65, 231–246.Google Scholar
- Brezis, H., and L. Veron, 1980, “Removable singularities of nonlinear elliptic equations,” Arch. Rat. Mech. Anal. 75, 1–6.Google Scholar
- Caffarelli, L. A., and A. Friedman, 1979, “The free boundary in the Thomas-Fermi atomic model,” J. Diff. Equ. 32, 335–356.Google Scholar
- Deift, P., W. Hunziker, B. Simon, and E. Vock, 1978, “ Point-wise bounds on eigenfunctions and wave packets in N-body quantum systems IV,” Commun. Math. Phys. 64, 1–34.Google Scholar
- Dirac, P. A. M., 1930, “Note on exchange phenomena in the Thomas-Fermi atom,” Proc. Cambridge Philos. Soc. 26, 376–385.Google Scholar
- Fermi, E., 1927. “Un metodo statistico per la determinazione di alcune priorieta dell’atome,” Rend. Accad. Naz. Lincei 6, 602–607.Google Scholar
- Firsov, 0. B., 1957, “Calculation of the interaction potential of atoms for small nuclear separations,” Zh. Eksper. i Teor. Fiz. 32, 1464. English transl. Soy. Phys.—JETP 5, 1192–1196 (1957)). See also Zh. Eksp. Teor. Fiz. 33, 696 (1957); 34, 447 (1958) [Soy. Phys.—JETP 6, 534–537 (1958); 7, 308–311 (1958)].Google Scholar
- Fock, V., 1932, “Uber die Giiltigkeit des Virialsatzes in der Fermi-Thomas’schen Theorie,” Phys. Z. Sowjetunion 1, 747–755.Google Scholar
- Gilbarg, D., and N. Trudinger, 1977,
*Elliptic Partial Differ-ential Equations of Second Order*(Springer Verlag, Heidel-berg).Google Scholar - Gombas, P., 1949,
*Die statistischen Theorie des Atomes und ihwe Anwenahingen*(Springer Verlag, Berlin).Google Scholar - Hille, E., 1969, “On the Thomas-Fermi equation,” Proc. Nat. Acad. Sc;. (USA) 62, 7–10.Google Scholar
- Hoffmann-Ostenhof, M., T. Hoffmann-Ostenhof, R. Ahlrichs, and J. Morgan, 1980, “On the exponential falloff of wave functions and electron densities,”
*Mathematical Problems in Theoretical Physics, Proceedings of the International Con-ference on Mathematical Physics held*in*Lausanne, Switzer-land, August 20–25, 1979*Springer Lectures Notes in Phys-ics, edited by K. Osterwalder (Springer-Verlag, Berlin, Heidelberg, New York, 1980), Vol. 116, 62–67.Google Scholar - Hoffmann-Ostenhof, T., 1980, “A comparison theorem for differential inequalities with applications in quantum me-chanics,” J. Phys. A 13, 417–424.Google Scholar
- Jensen, H., 1933, “Uber die Giiltigkeit des Virialsatzes in der Thomas-Fermischen Theorie,” Z. Phys, 81, 611–624.Google Scholar
- Kato, T., 1957, “On the eigenfunctions of many-particle sys-tems in quantum mechanics,” Commun. Pure Appl. Math. 10, 151–171.Google Scholar
- Lee, C. E., C. L. Longmire, and M. N. Rosenbluth, 1974, “Thomas-Fermi calculation of potential between atoms,” Los Alamos Scientific Laboratory Report No. LA-5694-MS.Google Scholar
- Liberman, D. A., and E. H. Lieb, 1981, “Numerical calcula-tion of the Thomas-Fermi-von Weizsacker function for an in-finite atom without electron repulsion,” Los Alamos National Laboratory Report in preparation.Google Scholar
- Lieb, E. H., 1974, “Thomas-Fermi and Hartree-Fock theory,” in
*Proceedings of the International Congress of Mathematicians, Vancouver*Vol. 2, 383–386.Google Scholar - Lieb, E. H., 1976, “The stability of matter,” Rev. Mod. Phys. 48, 553–569.Google Scholar
- Lieb, E. H., 1977, “Existence and uniqueness of the minimiz-ing solution of Choquard’s nonlinear equation,” Stud. in Appl. Math. 57, 93–105.Google Scholar
- Lieb, E. H., 1979, “A lower bound for Coulomb energies,” Phys. Lett. A 70, 444–446.Google Scholar
- Lieb, E. H., 1981a, “A variational principle for many-fermion systems,” Phys. Rev. Lett. 46, 457–459; Erratum 47, 69 (1981).Google Scholar
- Lieb, E. H., 1981b, “Analysis of the Thomas-Fermi-von Weizsacker equation for an atom without electron repulsion,” in preparation.Google Scholar
- Lieb, E. H., and S. Oxford, 1981, “An improved lower bound on the indirect Coulomb energy,” Int. J. Quantum Chem. 19, 427–439.Google Scholar
- Lieb, E. H., and B. Simon, 1977, “The Thomas-Fermi theory of atoms, molecules and solids,” Adv. in Math. 23, 22–116.Google Scholar
- These results were first announced in “Thomas-Fermi theory revisited,” Phys. Rev. Lett. 31, 681–683 (1973). An outline of the proofs was given in Lieb, 1974.Google Scholar
- Lieb, E. H., and B. Simon, 1978, “Monotonicity of the elec-tronic contribution to the Born-Oppenheimer energy,” J. Phys. B 11, L537–542.Google Scholar
- Lieb, E. H., and W. Thirring, 1975, “Bound for the kinetic energy of fermions which proves the stability of matter,” Phys. Rev. Lett. 35, 687–689; Errata 35, 1116 (1975).Google Scholar
- Lieb, E. H., and W. Thirring, 1976, “A bound for the moments of the eigenvalues of the Schroedinger Hamiltonian and their relation to Sobolev inequalities,” in
*Studies in Mathematical Physics: Essays in Honor of Valentine Borgmann*edited by E. H.Google Scholar - Lieb, B. Simon, and A. S. Wightman (Princeton Uni-versity Press, Princeton), 269–303. March, N. H., 1957, “The Thomas-Fermi approximation in quantum mechanics,” Adv. in Phys. 6, 1–98.Google Scholar
- Mazur, S., 1933, “Uber konvexe Mengen in linearen normier-ten Riumen,” Studia Math. 4, 70–84. See p. 81.Google Scholar
- Morgan, J., III., 1978, “The asymptotic behavior of bound eigenfunctions of Hamiltonians of single variable systems,” J. Math. Phys. 19, 1658–1661.Google Scholar
- Morrey, C. B., Jr., 1966,
*Multiple integrals in the calculus of variations*(Springer, New York). O’Connor, A. J., 1973, “Exponential decay of bound state wave functions,” Commun. Math. Phys. 32, 319–340.Google Scholar - Reed, M., and B. Simon, 1978,
*Methods of Modern Mathemati-cal Physics*(Academic, New York), Vol. 4. Ruskai, M. B., 1981, “Absence of discrete spectrum in highly negative ions,” Commun.Google Scholar - Math. Phys. (to appear). Scott, J. M. C., 1952, “The binding energy of the Thomas-Fermi atom,” Philos. Mag. 43, 859–867.Google Scholar
- Sheldon, J. W., 1955, “Use of the statistical field assumption in molecular physics,” Phys. Rev. 99, 1291–1301.Google Scholar
- Simon, B., 1981, “Large time behavior of the Lt norm of Schroedinger semigroups.” J. Func. Anal. 40. 66–83.Google Scholar
- Stampacchia, G., 1965,
*Equations elliptiques du second ordre a coefficients discontinus*(Presses de l’Universite, Montreal).Google Scholar - Teller, E., 1962, “On the stability of molecules in the Thomas-Fermi theory,” Rev. Mod. Phys. 34. 627–631.Google Scholar
- Thirring, W., 1981, “A lower bound with the best possible con-stant for Coulomb Hamiltonians,” Commun. Math. Phys. 79, 1–7 (1981).Google Scholar
- Thomas, L. H., 1927, “The calculation of atomic fields,” Proc. Camb. Philos. Soc. 23, 542–548.Google Scholar
- Torrens, I. M., 1972,
*Interatomic Potentials*(Academic, New York).Google Scholar - Veron, L., 1979, “Solutions singulieeres d’equations elliptiques semilineaire,” C. R. Acad. Sci. Paris 288, 867–869.Google Scholar
- This is an announcement; details will appear in “Singular solutions of nonlinear elliptic equations,” J. Non-Lin. Anal., in press. von Weizsicker, C. F., 1935, “Zur Theorie der Kernmassen,” Z. Phys. 96, 431–458.Google Scholar
- Yonei, K., and Y. Tomishima, 1965, “On the Weizsacker cor-rection to the Thomas-Fermi theory of the atom,” Jour. Phys. Soc. Japan 20, 1051–1057.Google Scholar
- Yonei, K., 1971, “An extended Thomas-Fermi-Dirac theory for diatomic molecules,” Jour. Phys. Soc. Japan 31, 882–894.Google Scholar

## Copyright information

© Springer-Verlag Berlin Heidelberg 1991