Skip to main content

Universal nature of van der Waals forces for Coulomb systems

  • Chapter
The Stability of Matter: From Atoms to Stars

Abstract

The nonrelativistic Schrodinger equation is supposed to yield a pairwise R −6 attractive interaction among atoms or molecules for large separation, R. Up to now this attraction has been investigated only in perturbation theory or else by invoking various assumptions and approximations. We show rigorously that the attraction is at least as strong as R −6 for any shapes of the molecules, independent of other features such as statistics or sign of charge of the particles. More precisely, we prove that two neutral molecules can always be oriented such that the ground-state energy of the combined system is less than the sum of the ground-state energies of the isolated molecules by a term — cR −6 provided R is larger than the sum of the diameters of the molecules. When several molecules are present, a pairwise bound of this kind is derived. In short, we prove that in the quantum mechanics of Coulomb systems everything binds to everything else if the nuclear motion is neglected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

    Google Scholar 

  2. E H. Lieb, Int. J. Quantum Chem. 24, 243 (1983).

    Google Scholar 

  3. E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981); 54, 311(E) (1982).

    Google Scholar 

  4. B. R. Junker and J. N. Bardsley, Phys. Rev. Lett. 28, 1227 (1972).

    Google Scholar 

  5. D. L. Morgan, Jr. and V. W. Hughes, Phys. Rev. A 7, 1811 (1973); Phys. Rev. D 2, 1389 (1970).

    Google Scholar 

  6. W. Kclos, D. L. Morgan, ID. M. Schrader, and L. Wohnewicz, Phys. Rev. A 6, 1792 (1975).

    Google Scholar 

  7. G. Feinberg and J. Sucher, Phys. Rev. A 2, 2395 (1970).

    Google Scholar 

  8. H. Margenau and N. R. Kestner, The Theory of Intermolecular Forces (Pergamon, New York, 1971).

    Google Scholar 

  9. Yu. S. Barash and V. L. Ginzburg, Usp. Fiz. Nauk 143, 345 (1984) [Soy. Phys.—Usp. 27, 7 (1984)].

    Google Scholar 

  10. B. Simon and J. Morgan, Int. J. Quantum Chem. 17, 1143 (1980).

    Google Scholar 

  11. G. Casimir and D. Polder, Phys. Rev. 73, 360 (1948).

    Article  ADS  MATH  Google Scholar 

  12. E M. Lifshitz, Zh. Eksp. Teor. Fiz. 29, 94 (1955).

    Google Scholar 

  13. J. R. Manson and R. H. Ritchie, Phys. Rev. Lett. 54, 785 (1985).

    Google Scholar 

  14. E. H. Lieb, Rev. Mod. Phys. 48, 553 (1976).

    Google Scholar 

  15. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and W. Thirring, J. Phys. B 11, L571 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lieb, E.H., Thirring, W.E. (1991). Universal nature of van der Waals forces for Coulomb systems. In: Thirring, W. (eds) The Stability of Matter: From Atoms to Stars. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02725-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02725-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02727-1

  • Online ISBN: 978-3-662-02725-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics