Skip to main content

Digestive Apparatus

  • Chapter

Abstract

The organs involved in the intake, transport, digestion, and absorption of food and drink make up the digestive or alimentary apparatus. It consists of a long canal (extending from the mouth to the anus) with which several kinds of glands (salivary, liver, and pancreas) are closely associated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Reference

  • Arvidson K, Grafström RC, Pemer A (1988) Scanning electron microscopy of oral mucosa in vivo and in vitro: A review. Scanning Microscopy 2: 385–396.

    PubMed  CAS  Google Scholar 

  • Kullaa-Mikkonen A (1987) Scanning electron microscopy in oral mucosal research: A review. Scanning Microscopy 1: 1145–1155.

    PubMed  CAS  Google Scholar 

  • Schroeder HE (1986) The Periodontium. Handbook of Microscopic Anatomy, Vol 5, Part 5. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Berkowitz BKB, Boyde RM, Frank HJ, Höhling BJ, Moxham J, Nalbandian J, Tonge CH (1989) Teeth. In: Oksche A, Vollrath L (Eds) Handbook of Microscopic Anatomy, Vol 5, Part 6. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Garnick JJ, Ringle RD (1988) The dento-gingival junction as seen with light microscopy and scanning electron microscopy. Scanning Microscopy 2: 1113–1122.

    PubMed  CAS  Google Scholar 

  • Jones JS (1987) The root surface: An illustrated review of some scanning electron microscope studies. Scanning Microscopy 1: 2003–2018.

    PubMed  CAS  Google Scholar 

  • Hattyasy D (1982) Connecting transversal nerve fibers in the dentine. Z Mikrosk Anat Forsch 96: 679–688.

    PubMed  CAS  Google Scholar 

  • La Flèche RG, Frank RM, Steuer P (1985) The extent of the human odontoblast process as determined by transmission electron microscopy: The hypothesis of a retractable suspensor system. J Biol Buccale 13: 293–305.

    PubMed  Google Scholar 

  • Nähri VOM (1985) Dentin sensitivity. A review. J Biol Buccale 13: 75–96.

    Google Scholar 

  • Wang YN, Ashrati SH, Weber DF (1985) Scanning electron microscopic observations of casts of human dentinal tubules along the interface between primary and secondary dentin. Anat Rec 211: 149–155.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T (1986) The innermost layer of cementum in rat molars: Its ultrastructure, development and calcification. Arch Histol Jap 49: 459–481.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y (1984) Crystal growth in calcifying fronts during dentinogenesis. Acta Anat 118: 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Pashley DH (1989) Dentin: a dynamic substrate — A review. Scanning Microscopy 3: 161–176.

    PubMed  CAS  Google Scholar 

  • Ten Cate AR (1985) Oral Histology. Development, Structure and Function, 2nd edn. Mosby, St Louis.

    Google Scholar 

  • Whittaker DK (1978) The enamel-dentin junction of human and Macaca iris teeth: A light and electron microscopic study. J Anat 125: 323–335.

    PubMed  CAS  Google Scholar 

  • Martin LB, Boyde A, Grine EF (1988) Enamel structure in primates: A review of scanning electron microscope studies. Scanning Microscopy 2: 1503–1526.

    PubMed  CAS  Google Scholar 

  • Radlanski RJ, Seidl W, Steding G, Jager A (1990) Über die Ausrichtung der Prismen im Zahnschmelz menschlicher permanenter Zähne. Anat Anz 170: 329–339 (with English abstract).

    PubMed  CAS  Google Scholar 

  • Risnes S (1989) Multiplane sectioning and scanning electron microscopy as a method for studying the three-dimensional structure of mature dental enamel. Scanning Microscopy 1: 1893–1902.

    Google Scholar 

  • Risnes S (1990) Structural characteristics of staircase-type Retzius’ lines in human dental enamel analyzed by scanning electron microscopy. Anat Rec 226: 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Warshawsky H (1989) Organization of crystals in enamel. Anat Rec 224: 242–262.

    Article  PubMed  CAS  Google Scholar 

  • Weber DF, Ashrafi SH (1979) Structure of Retzius lines in partially demineralized human enamel. Anat Rec 194: 563–570.

    Article  PubMed  CAS  Google Scholar 

  • Kullaa-Mikkonen A, Sorvari TE (1985) A scanning electron microscopic study of the dorsal surface of the human tongue. Acta Anat 123: 114–120.

    Article  PubMed  CAS  Google Scholar 

  • Nagato T, Nagaki M, Murakami M, Tanioka H (1989) Three-dimensional architecture of rat lingual filiform papillae with special reference to the epithelium—connective tissue interface. J Anat 165: 177–189.

    PubMed  CAS  Google Scholar 

  • Azzali G, Gatti R, Bucci G, Orlandini G (1989) Fine structures of bat deep posterior lingual glands (von Ebner’s). J Submicrosc Cytol Pathol 21: 669–684.

    PubMed  CAS  Google Scholar 

  • Nair RPN, Rossinsky K (1984) Crypt architecture of tonsilla lingualis in the monkey Macaca fascicularis. Cell Tissue Res 237: 619–627.

    PubMed  CAS  Google Scholar 

  • Nair RPN, Rossinsky K (1985) Organization of lymphoid tissue in the tonsilla lingualis. An ultrastructural study in Macaca fascicularis (Primates, Cercopithecoidea). Cell Tissue Res 240: 233–242.

    PubMed  CAS  Google Scholar 

  • Castellucci VF (1985) The chemical senses: Taste and smell. In: Kandel ER, Schwartz A (Eds) Principles of Neural Science, 2nd edn. Elsevier, Amsterdam.

    Google Scholar 

  • Hettinger T, Frank EM (1992) Information processing in mammalian gustatory system. Curr Op Neurobiol 2: 469–478.

    Article  PubMed  CAS  Google Scholar 

  • Kinammon SC (1988) Taste transduction: A diversity of mechanisms. Trends Neurosci 11: 491–496.

    Article  Google Scholar 

  • Murray RG (1986) The mammalian taste bud III cell: A critical analysis. J Ultrastruct Mol Struct Res 95: 175–188.

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Obara N, Suzuki Y (1988) Intermediate filaments in mouse taste bud cells. Arch Histol Cytol 51: 99–108.

    Article  PubMed  CAS  Google Scholar 

  • Teeter J, Gold GH (1988) A taste of things to come. Nature 331: 298–299.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe LS, König B Jr (1988) Ultrastructure of palatine salivary glands in the tufted capuchine monkey (Cebus apella Linnaeus, 1758). Z Mikrosk Anal Forsch 102: 590–597.

    CAS  Google Scholar 

  • Braus (1924) Anatomie des Menschen. Springer, Berlin.

    Google Scholar 

  • König B, van Lennep EW (1978) The Morphology of Salivary Glands. Academic Press, London.

    Google Scholar 

  • Martinez-Madrigal F, Micheau C (1989) Histology of the major salivary glands. Am J Surg Pathol 13: 879–900.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani O, Ohtsuka A, Gannon B (1983) The microvasculature of rat salivary glands. A scanning electron microscopic study. Acta Anat 115: 345–356.

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Miyoshi S (1988) Ultrastructure of the main excretory duct epithelia of the rat parotid and submandibular glands with review of literature. Anat Rec 220: 239–251.

    Article  PubMed  CAS  Google Scholar 

  • Smaje LH, Henderson JR (1984) Microcirculation of the exocrine glands. In: Motrillaro NA (Ed) Physiology and Pharmacology of the Microcirculation, Vol 2. Academic Press, Orlando.

    Google Scholar 

  • Voss H, Herrlinger R (1972) Taschenbuch der Anatomie. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Chaudhry AP, Dutler LS, Yamane GM, Labay GR, Sunderrag J, Manak JR Jr (1987) Ultrastructure of normal human parotid gland with special emphasis on myoepithelial distribution. J Anat 152: 1–11.

    PubMed  CAS  Google Scholar 

  • Jacob S, Poddar S (1987) Ultrastructure of the ferret parotid gland. J Anat 152: 37–45.

    PubMed  CAS  Google Scholar 

  • Pinkstaff CA (1980) The cytology of salivary glands. Int Rev Cytol 63: 141–261.

    Article  PubMed  CAS  Google Scholar 

  • Riva A, Lantini MS, Riva FT (1990) Normal human salivary glands. In: Riva A, Motta PM, Riva FT (Eds) Ultrastructure of the Extraparietal Glands of the Digestive Tract. Kluwer, Norwell.

    Google Scholar 

  • Ten Cate AR (1985) Oral Histology. Development, Structure, and Function. CV Mosby, St Louis.

    Google Scholar 

  • König B Jr, Kühnel W (1986) Light-and electronmicroscopical studies of the parotid and the submandibular gland in the cat. Z Mikrosk Anat Forsch 100: 469–483.

    PubMed  Google Scholar 

  • Lantini MS, Proto E, Puxeddu P, Riva A, Testa Riva E (1990) Fine structure of excretory ducts of human salivary glands. J Submicrosc Cytol Pathol 22: 465–475.

    PubMed  CAS  Google Scholar 

  • Mazurova Y (1983) The S.E.M. study of rat parotid gland parenchyma. Z Mikrosk Anat Forsch 97: 626–632.

    PubMed  CAS  Google Scholar 

  • Nagato T, Tandler B (1986) Ultrastructure of dog parotid gland. J Submicrosc Cytol 18: 64–74.

    Google Scholar 

  • Tandler B, Phillips CJ, Toyoshima K, Nagato T (1989) Comparative studies of the striated ducts of mammalian salivary glands. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • van Lennep EW, Kennerson AR, Compton JS (1977) The ultra-structure of sheep parotid gland. Cell Tissue Res 179: 377–392.

    PubMed  CAS  Google Scholar 

  • Arancibia S, Assenmacher I (1985) Les glandes sous-maxillaires dans le contexte endocrinien. J Biol Buccale 13: 185–203.

    PubMed  CAS  Google Scholar 

  • Espinal EG, Ubios AM, Pradier R, Cabrini RL (1985) Scanning electron microscopy of human submandibullary gland. Acta Anat 122: 25–28.

    Article  PubMed  CAS  Google Scholar 

  • Nagashima Y, Ono K (1985) Myoepithelial cell ultrastructure in the submandibular gland of man. Anat Embryol 171: 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani O, Taguchi T, Murakami T (1990) Microvascularization of extraparietal glands of the alimentary canal. In: Riva A, Motta PM, Riva FT (Eds) Ultrastructure of the Extraparietal Glands of the Digestive Tract. Kluwer, Norwell.

    Google Scholar 

  • Riva A, Valentino MS, Lantini, Cotti, Testa Riva F (1989) Surface microanatomy of human major salivary glands. In: Motta PM (Ed) Cell and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Riva A, Tandler B, Testa Riva F (1988) Ultrastructural observations on human sublingual gland. Am J Anat 181: 385–392.

    Article  PubMed  CAS  Google Scholar 

  • Aharinejad S, Franz P, Lametschwandtner A, Firbas W (1989) Esophageal vasculature in the guinea pig: A scanning electron microscope study of vascular corrosion casts. Scanning Microscopy 3: 567–574.

    PubMed  CAS  Google Scholar 

  • Faussone-Pellegrini MS, Pantalone D, Costesini C (1989) The ultra-structure study of the smooth muscle cells and nerve endings of the human stomach. J Submicrosc Cytol Pathol 21: 421–437.

    PubMed  CAS  Google Scholar 

  • Helander HF, Leth R, Olbe L (1986) Stereological investigations on human gastric mucosa: I. Normal oxyntic mucosa. Anat Rec 216: 373–380.

    Article  PubMed  CAS  Google Scholar 

  • Ito S (1987) Functional gastric morphology. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, Vols 1 and 2, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Katsuko K, Sakano Y (1984) Panoramic observation of the mouse gastric mucosa by superwide-field electron microscopy. Arch Histol Jap 47: 209–221.

    Article  Google Scholar 

  • Phillips CJ, Studholme KM, Forman GL (1984) Comparative ultra-structure of gastric mucosae in four genera of bats (Mammalia: Chiroptera), with comments of gastric evolution. Ann Carnegie Mus 53: 71–117.

    Google Scholar 

  • Imada M, Tatsumi H, Fujita H (1987) Scanning electron microscopy of vascular architecture in the gastric mucosa of the golden hamster. Cell Tissue Res 250: 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson ED, Tepperman BL (1984) Microcirculation of the stomach. In: Mortillaro NA (Ed) Physiology and Pharmacology of the Microcirculation, Vol 2. Academic Press, Orlando.

    Google Scholar 

  • Ohtani O (1989) Corrosion casts in liver and stomach microcirculation. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Piasecki C, Wyatt C (1986) Patterns of blood supply to the gastric mucosa. A comparative study revealing an end-artery model. J Anat 149: 21–39.

    PubMed  CAS  Google Scholar 

  • Raschke M, Lierse W, van Ackeren H (1987) Microvascular architecture of the mucosa of the gastric corpus in man. Acta Anat 130: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Bonvicini F, Maltarello MC, Versura P, Bianchi D, Gasbarrini G, Laschi R (1986) Correlative scanning electron microscopy study of human gastric mucosa. Scanning Electron Microscopy 1986 /11: 687–702.

    Google Scholar 

  • Katani-Matsumoto A, Kataoka K (1987) Mucus release of surface mucous cells of the mouse stomach with special reference to cell maturation stages and dietary conditions. Arch Histol Jap 50: 273–282.

    Article  Google Scholar 

  • Kataoka K, Takeoka Y, Hirano S (1985) Electron microscopic observations of the surface mucous cells during physiological degeneration and extrusion. Arch Histol Jap 48: 327–339.

    Article  PubMed  CAS  Google Scholar 

  • Tasman-Jones C (1985) Gastric mucus — Physical properties in cytoprotection. Med J Austral (Suppl) 142: S5 - S6.

    CAS  Google Scholar 

  • Yeomans ND (1985) The gastric mucus cells — Structural considerations. Med J Austral (Suppl) 142: 53 - S4.

    Google Scholar 

  • Yeomans ND (1985) Gastric mucus — Chemistry, synthesis and secretion. Med J Austral (Suppl) 142: 57–88.

    Google Scholar 

  • D’Adda T, Bertelé A, Pilate FP, Bordi C (1989) Quantitative electron microscopy of endocrine cells in oxyntic mucosa of normal human stomach. Cell Tissue Res 255: 41–48.

    PubMed  Google Scholar 

  • Forte JG, Wolosin JM (1987) HC1 secretion by the gastric oxyntic cell. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, Vols 1 and 2, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Grube D (1986) The endocrine cells of the digestive system: Amines, peptides, and modes of action. Anat Embryo] 175: 151–162.

    Article  CAS  Google Scholar 

  • Grube D, Forssmann WG (1979) Morphology and function of the entero-endocrine cells. Horm Metab Res 11: 589–646.

    Article  PubMed  CAS  Google Scholar 

  • Sachs G, Berglindh T (1981) Physiology of the parietal cell. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract. Raven Press, New York.

    Google Scholar 

  • Solcia E, Capella C, Buffa R, Usellini L, Fiocca R, Sessa F (1987) Endocrine cells of the digestive system. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, Vols 1 and 2, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Kusumoto Y, Grube D, Sato AG, Kaneda K, Nakamae E (1988) Cytology and arrangement of enterochromaffine ( EC) cells in the human stomach. Arch Histol Cytol 51: 271–276.

    Article  PubMed  CAS  Google Scholar 

  • Leblond CP, Lee ER (1985) Epithelial renewal in the pyloric antrum. A dynamic view of cell development. Anat Rec 211: 107A - 108A.

    Google Scholar 

  • Walsh JH (1987) Gastrintestinal hormones. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, Vols 1 and 2, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Browning J, Gannon B (1984) The microvascular architecture of rat proximal duodenum, with particular reference to Brunner’s glands. Biomed Res 5: 245–258.

    Google Scholar 

  • Flemstrom G, Garner A (1984) Some characteristics of duodenal epithelium. In: Nugent J, O’Connor M (Eds) Mucus and Mucosa. Pitman, London (Ciba Found Symp 109 ).

    Google Scholar 

  • Komiya R (1983) Basal-granulated cells in human Brunner’s glands. Arch Histol Jap 46: 87–101.

    Article  Google Scholar 

  • Shiner M (1983) Ultrastructure of the Small Intestinal Mucosa. Normal and Disease-Related Appearances. Springer, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  • Calvert R, Pothier P (1990) Migration of fetal intestinal intervillous cells in neonatal mice. Anat Rec 227: 199–206.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani O, Kikuta A, Ohtsuka A. Taguchi T, Murakami T (1983) Microvasculature as studied by the microvascular corrosion casting/scanning electron microscope method. I. Endocrine and digestive system. Arch Histol Jap 46: 1–42.

    CAS  Google Scholar 

  • Potten CS, Loeffler M (1987) A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanism of cell migration and proliferation hierarchy. J Theor Biol 127: 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Quaroni A (1985) Crypt cell development in newborn rat small intestine. J Cell Biol 100: 1601–1610.

    Article  PubMed  CAS  Google Scholar 

  • Satoh YI, Nagashima Y, Oomori Y, Ishikawa K, Matoba M, Ono K (1985) Scanning electron microscopical observation on the isolated mucosa of rat small intestine, with special reference to the intestinal crypt. Anat Anz 159: 305–309.

    PubMed  CAS  Google Scholar 

  • Colony PC, Specian RD (1987) Endocytosis and vesicular traffic in fetal and adult colonic goblet cells. Anat Rec 218: 365–372.

    Article  PubMed  CAS  Google Scholar 

  • Neutra MR, Phillips TL, Phillips TE (1984) Regulation of intestinal goblet cells in situ, in mucosal explants and in the isolated epithelium. In: Nugent J, O’Connor M (Eds) Mucus and Mucosa. London, Pitman (Ciba Found Symp 109 ).

    Google Scholar 

  • Ohtani O (1987) Three-dimensional organization of lymphatics and its relationship to blood vessels in rat small intestine. Cell Tissue Res 248: 365–374.

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto R, Ogata T (1989) Scanning electron microscopic studies on the subendothelial tissue of the gastrointestinal mucosa of the rat. Arch Histol Cytol 52: 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Weiser MM, Walters JRF, Wilson JR (1986) Intestinal cell membranes. Int Rev Cytol 101: 1–57.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T (1982) Ultrastructural basis of intestinal absorption. Arch Histol Jap 45: 1–22.

    Article  PubMed  CAS  Google Scholar 

  • Furness JB, Costa M (1980) Types of nerves in the enteric nervous system. Neuroscience 5: 1–20.

    Article  PubMed  CAS  Google Scholar 

  • Gabella G (1987) The cross-ply arrangement of collagen fibres in the submucosa of the mammalian small intestine. Cell Tissue Res 248: 491–497.

    Article  PubMed  CAS  Google Scholar 

  • Kamuro T (1988) The lattice arrangement of collagen fibres in the submucosa of the rat small intestine: scanning electron microscopy. Cell Tissue Res 251: 117–121.

    Article  Google Scholar 

  • Mortillaro NA (1984) Microcirculation of the small intestine. In: Mortillaro NA (Ed) Physiology and Pharmacology of the Microcirculation, Vol 2. Academic Press, Orlando.

    Google Scholar 

  • Mutt V (Ed) (1988) Gastrointestinal hormones. Adv Metab Disorders 11: 1–545.

    Google Scholar 

  • Scheuermann DW, Stach W, Timmermans JP (1989) Three-dimensional visualization of the ganglionated enteric nerve plexuses in the small intestine of the pig. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Ushiki T (1990) The three-dimensional organization and ultra-structure of lymphatics in the rat intestinal mucosa as revealed by scanning electron microscopy after KOH-collagenase treatment. Arch Histol Cytol (Suppl) 53: 127–136.

    Article  Google Scholar 

  • Börsch G (1984) Der Gastrointestinaltrakt als Immunorgan: Das darm-assoziierte Immunsystem. Klin Wochenschr 62: 699–709 (with English abstract).

    Article  PubMed  Google Scholar 

  • Chambraud L, Bernadac A, Govel JP, Maroux S (1989) Renewal of goblet cell mucus granules during the cell migration along the cryptvillus axis in rabbit jejunum: An immunolabelling study. Biol Cell 65: 151–162.

    Article  PubMed  CAS  Google Scholar 

  • Kagnoff MF (1987) Immunology of the digestive system. In: Johnson LR (Ed) Physiology of the Gastrointestinal Tract, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Ullrich G, Weyrauch KD (1985) Vascular architecture of the equine intestine (Scanning and transmission electronmicroscopic investigations). Z Mikrosk Anat Forsch 99: 985–1001.

    Google Scholar 

  • Hashimoto Y, Komuro T (1988) Close relationships between the cells of the immune system and the epithelial cells in the rat small intestine. Cell Tissue Res 254: 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Jarry A, Robaskiewics M, Brousse N, Potet F (1989) Immune cell associated with M-cells in the follicle-associated epithelium of Peyer’s patches in the rat. Cell Tissue Res 255: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Marshall JS, Bienenstock J, Perdue MH, Stanisz AM, Stead RH, Ernest PB (1989) Novel cellular interactions and networks involving the intestinal immune system and its microenvironment. APMIS 97: 382–395.

    Article  Google Scholar 

  • Owen RL, Ermak TH (1990) Structural specializations for antigen uptake and processing in the digestive tract. Springer Sem Immunopathol 12: 139–152.

    CAS  Google Scholar 

  • Pabst R (1987) The anatomical basis for the immune function of the gut. Anat Embryol 176: 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa K, Myoshi M (1985) Intercellular spaces in the lymph nodules-associated epithelium of the rabbit Peyer’s patch and appendix. Arch Histol Jap 48: 53–67.

    Article  PubMed  CAS  Google Scholar 

  • Ohtani O, Ohtsuka A, Owen R (1986) Three-dimensional organization of the lymphatics in the rabbit appendix. Gastroenterology 91: 947–955.

    PubMed  CAS  Google Scholar 

  • Spencer J, Finn T, Isaacson PG (1985) Gut associated lymphoid tissue: A morphological and immunocytochemical study of the human appendix. Gut 16: 672–679.

    Article  Google Scholar 

  • Aharinejad S, Lametschwandtner A, Franz P, Firbas W (1991) The vascularization of the digestive tract studied by scanning electron microscopy with special emphasis on the teeth, esophagus, stomach, small and large intestine, pancreas and liver. Scanning Microscopy 5: 811–849.

    PubMed  CAS  Google Scholar 

  • Browning J, Gannon B (1986) Mucosal microvascular organization of the rat colon. Acta Anat 126: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Faussone Pellegrini MS, Cortesini C (1984) Ultrastructural peculiarities of the inner portion of the circular layer of colon. I. Research in the human. Acta Anat 120: 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Specian R, Neutra MR (1981) The surface topogaphy of the colon- ic crypts in rabbit and monkey. Am J Anal 160: 461–472.

    Article  CAS  Google Scholar 

  • Warfel KA, Hull MT (1988) Basal lamina fenestrations in the human colon: Transmission and scanning electron microscope study. Anat Rec 220: 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Machiarelli G, Makabe S, Motta PM (1990) The structural basis of mammalian liver function. In: Riva A, Motta PM, Riva FT (Eds) Ultrastructure of the Extraparietal Glands of the Digestive Tract. Kluwer, Norwell.

    Google Scholar 

  • Motta P (1981) Three-dimensional architecture of mammalian liver. A scanning electron microscopic review. In: Allen DJ, Motta P, Di Dio LAJ (Eds) Three-Dimensional Microanatomy of Cells and Tissue Surfaces. Elsevier/North Holland, New York.

    Google Scholar 

  • Motta PM (1984) Three-dimensional microanatomy of the liver. Arch Histol Jap 47: 1–30.

    Article  PubMed  CAS  Google Scholar 

  • Motta P, Muto M, Fujita T (1978) The Liver. An Atlas of Scanning Electron Microscopy. Igaku-Shoin, Tokyo, New York.

    Google Scholar 

  • Ohtani O (1988) Three-dimensional organization of the collagen fibrillar framework on the human and rat livers. Arch Histol Cytol 51: 473–488.

    Article  PubMed  CAS  Google Scholar 

  • Macchiarelli G, Motta PM (1986) The three-dimensional microstructure of the liver. A review by scanning electron microscopy. Scanning Electron Microscopy 1986/III: 1019–1038.

    Google Scholar 

  • Macchiarelli G, Motta PM, Fujita T (1988) Scanning electron microscopy of the liver cells. In: Motta PM (Ed) Biopathology of the Liver. Kluwer, Dordrecht.

    Google Scholar 

  • Mastai R, Huet PM (1988) Hepatic circulation-applicable human methodology. In: Bioulac-Sage P, Balbaud C (Eds) Sinusoids in Human Liver: Health and Disease. Kupffer Cell Foundation, Rijswijk.

    Google Scholar 

  • Itoshima T, Kiyotoshi S, Kawaguchi K, Yoshino K, Munetomo F, Ohta W, Shimada Y, Nagashima H (1980) Scanning electron microscopy of the rat bile canalicular-ductular junction. Scanning Electron Microscopy 1980/III: 373–378.

    Google Scholar 

  • Ohtani O, Murakami T (1978) Peribiliary portal system in the rat liver as studied by the injection replica scanning electron microscope method. Scanning Electron Microscopy 1978/II: 241–244.

    Google Scholar 

  • Wisse E, De Zanger RB, Charles K, Van Der Smissen P, McCuskey RS (1985) The liver sieve: Considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5: 683–692.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto K, Phillips JM (1986) Three-dimensional observation of the intrahepatic lymphatics by scanning electron microscopy of corrosion casts. Anat Rec 214: 67–70.

    Article  PubMed  CAS  Google Scholar 

  • Beresford WA, Henninger JM (1986) A tabular comparative histology of the liver. Arch Histol Jap 49: 267–281.

    Article  PubMed  CAS  Google Scholar 

  • Gaudio E, Pannarale L, Carpino F, Marinozzi G (1988) Microcorrosion casting in normal and pathological biliary tree morphology. Scanning Microscopy 2: 471–475.

    PubMed  CAS  Google Scholar 

  • Niiro GK, O’Morchoe CCC (1986) Pattern and distribution of in- trahepatic lymph vessels in the rat. Anat Rec 215: 351–360.

    Article  PubMed  CAS  Google Scholar 

  • Beresford WA, Henninger JM (1986) A tabular comparative histology of the liver. Arch Histol Jap 49: 267–281.

    Article  PubMed  CAS  Google Scholar 

  • Okanue T, Ohta M, Fushiki S, Ou O, Kachi K, Okuno T, Tokino T, French SW (1985) Scanning electron microscopy of the liver cell cytoskeleton. Hepatology 5: 1–6.

    Article  Google Scholar 

  • Reuben A (1984) Bile formation: Sites and mechanisms. Hepatology 4: 155–155.

    Article  Google Scholar 

  • Barbera-Guillem E, Vidal-Vanaclocha R (1988) Sinusoidal structure of the liver. Cell Biol Rev 16:1–34 and 54–68.

    Google Scholar 

  • Bouwens L (1988) Structural and functional aspects of Kupffer cells. Cell Biol Rev 16: 69–94.

    CAS  Google Scholar 

  • Gendrault JL, Steffan AM, Bingen A, Kirn A (1988) Kupffer and endothelial cells. In: Bioulac-Sage P, Balabaud C (Eds) Sinusoids in Human Liver: Health and Disease. Kupffer Cell Foundation, Rijswijk.

    Google Scholar 

  • Horn T, Christoffersen P (1988) Sinusoidal endothelial cells. A SEM investigation of the fenestration in normal and diseases human liver. In: Bioulac-Sage P, Balabaud C (Eds) Sinusoids in Human Liver: Health and Disease. Kupffer Cell Foundation, Rijswijk.

    Google Scholar 

  • Macchiarelli G, Makabe S, Motta PM (1988) Scanning electron microscopy of adult and fetal liver sinusoids. In: Bioulac-Sage P, Balabaud C (Eds) Sinusoids in Human Liver: Health and Disease. Kupffer Cell Foundation, Rijswijk.

    Google Scholar 

  • Morin O, Goulet F, Normand C (1988) Liver sinusoidal endothelial cells: Isolation, purification, characterization and intercation with hepatocytes. Cell Biol Rev 15: 1–69.

    CAS  Google Scholar 

  • Wardle EN (1987) Kupffer cells and their function. Liver 7: 63–76.

    PubMed  CAS  Google Scholar 

  • Aterman K (1986) The parasinusoidal cells of the liver: A historical account. Histochem J 18: 279–305.

    Article  PubMed  CAS  Google Scholar 

  • Hendriks HJF, Verhoofstad WAM, Brouwer A, De Leeuw AM, Knook DL (1985) Perisinusoidal fat-storing cells are the main vitamin A storage sites in rat liver. Exp Cell Res 160: 138–149.

    Article  PubMed  CAS  Google Scholar 

  • Reinke P, David H (1987) Structure and function of the sinusoidal wall of the liver (“The perisinusoidal functional unit”). Z Mikrosk Anat Forsch 101: 91–136.

    PubMed  CAS  Google Scholar 

  • Takahashi-Iwanaga H, Fujita T (1986) Application of NaOH maceration method to a scanning microscopic observation of Ito cells in the rat liver. Arch Histol Jap 49: 349–357.

    Article  PubMed  CAS  Google Scholar 

  • Wake K (1980) Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structures in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int Rev Cytol 66: 303–353.

    Article  PubMed  CAS  Google Scholar 

  • Frierson HF (1989) The gross anatomy and histology of the gallbladder, extrahepatic bile ducts, Vaterian system, and minor papilla. Am J Surg Pathol 13: 146–162.

    Article  PubMed  Google Scholar 

  • Gaudio E, Pannarale L, Caprino F, Marinozzi G (1988) Microcorrosion casting in normal pathological biliary three morphology. Scanning Microscopy 2: 471–475.

    PubMed  CAS  Google Scholar 

  • Luciano L, Reale E (1990) The human gallbladder. In: Riva A, Motta PM, Riva FT (Eds) Ultrastructure of the Extraparietal Glands of the Digestive Tract. Kluwer, Norwell.

    Google Scholar 

  • Mac Pherson BR, Lee YV (1986) A scanning electron-microscopic study of the muscle layer of the canine gallbladder. Acta Anat 127: 59–64.

    Article  Google Scholar 

  • Schreiber H (1941) Das Muskellager der menschlichen Gallenblase-wand im Vergleich zu der vierfüssiger Säuger. Z Anat Entwickl Gesch 111: 91–150.

    Article  Google Scholar 

  • Jones AL, Spring-Mills E (1984) The liver and gallbladder. In: Weiss L (Ed) Modern Concepts of Gastrointestinal Histology. Elsevier, Amsterdam.

    Google Scholar 

  • Nielsen OV, Nielsen ML, Lauritzen KEF (1975) Examination of the mucosa of the normal human gallbladder by scanning electron microscopy. Micron 5: 281–291.

    Google Scholar 

  • Gilloteaux J, Pomerants B, Kelly ITR (1989) Human gallbladder ultrastructure: Evidence of intraepithelial nerve structures. Am J Anat 184: 321–333.

    Article  PubMed  CAS  Google Scholar 

  • Jacyna M, Hopwood D, Milne G (1987) Permeability of the mouse gallbladder to blood-borne horseradish peroxidase. Histochem J 19: 103–110.

    Article  PubMed  CAS  Google Scholar 

  • Jamieson JD (1984) The exocrine pancreas and salivary glands. In: Weiss L (Ed) Modern Concepts of Gastrointestinal Histology. Elsevier, Amsterdam.

    Google Scholar 

  • Kern HF (1986) Fine structure of the human exocrine pancreas. In: Go WLW, Brooks FP, Di Mango EP (Eds) Exocrine Pancreas. Biology, Pathobiology and Diseases. Raven Press, New York.

    Google Scholar 

  • Ohtani O (1987) Three-dimensional organization of the connective tissue fibers of the human pancreas: A scanning electron microscopic study of NaOH-treated tissues. Arch Histol Jap 50: 557–566.

    Article  PubMed  CAS  Google Scholar 

  • Banni-Sacchi T, Bani D (1985) New views on the identification of the various cell types in the pancreatic islets of the rat. Acta Anat 122: 1–17.

    Article  Google Scholar 

  • Bendayan M (1987) Presence of endocrine cells in pancreatic ducts. Pancreas 2: 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Bock P, Geleff S (1984) Pancreatic duct glands. III. Morphology of secretory epithelium and endoepithelial glands. Z Mikrosk Anat Forsch 98: 857–872.

    PubMed  CAS  Google Scholar 

  • Grube D, Eckert I, Speck PT, Wagner HJ (1983) Immunohistochemistry and microanatomy of the islets of Langerhans. Biomed Res (Suppl) 4: 25–36.

    Google Scholar 

  • Ohtani O, Ushiki T, Kanazawa H, Fujita T (1986) Microcirculation of the rat and rabbit pancreas with special reference to the insulo-acinar portal system and emissary vein of the islet. Arch Histol Jap 49: 45–60.

    Article  PubMed  CAS  Google Scholar 

  • Naguro T, Iiono A (1990) Three-dimensional features of pancreatic cells. In: Riva A, Motta PM, Riva FT (Eds) Ultrastructure of the Extraparietal Glands of the Digestive Tract. Kluwer, Norwell.

    Google Scholar 

  • Rambourg A, Clermont Y, Hermo L (1988) Formation of secretion granules in the Golgi apparatus of pancreatic acinar cells of the rat. Am J Anat 183:187–199.

    Google Scholar 

  • Romagnoli P (1985) The physiology of pancreatic acinar cells: Questions and perspectives on the secretory process. Bioessays 2: 68–71.

    Article  Google Scholar 

  • Takahashi H (1988) Scanning electron microscopy of the rat exocrine pancreas. Arch Histol Jap 47: 387–404.

    Article  Google Scholar 

  • Tooze J, Kern HE, Fuller SD, Howell CE (1989) Condensation-sorting events in the rough endoplasmic reticulum of exocrine pancreatic cells. J Cell Biol 109: 35–50.

    Article  PubMed  CAS  Google Scholar 

  • Uchiyama Y, Saito K (1982) A morphometric study of 24-hour variations in subcellular structures of the rat pancreatic acinar cells. Cell Tissue Res 226: 609–620.

    Article  PubMed  CAS  Google Scholar 

  • Ushiki T, Ide C (1988) Autonomic nerve networks in the rat exocrine pancreas as revealed by scanning electron and transmission electron microscopy. Arch Histol Cytol 51: 71–81.

    Article  PubMed  CAS  Google Scholar 

  • Bock P (1986) Fine structure of the neuro-insular complex type II in the cat. Arch Histol Jap 49: 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Bonneweir S (1989) Pancreatic islets. Morphology, organization and physiological imprications. In: Draznin B, Melmed S, Leroith D (Eds) Molecular and Cell Biology of Diabetes Mellitus, Vol 1, Insulin Secretion. Alan R Liss, New York.

    Google Scholar 

  • Donev SR (1984) Ultrastructural evidence for the presence of a glial sheath investing the islet of Langerhans in the pancreas of mammals. Cell Tissue Res 237: 343–348.

    Article  PubMed  CAS  Google Scholar 

  • Murakami T, Fujita T, Taguchi T, Nanakka Y, Orita K (1992) The blood vascular bed of human pancreas, with special reference to the insulo-acinar portal system. Scanning electron microscopy of corrosion casts. Arch Histol Cytol 55: 381–395.

    Article  PubMed  CAS  Google Scholar 

  • Pelletier G (1984) Cell types of endocrine pancreas by immunoelecIron microscopy. In: Motta PM (Ed) Ultrastructure of Endocrine Cells and Tissues. Martinus Nijhoff, Boston.

    Google Scholar 

  • Radke R, Stach W (1986) Are the islets of Langerhans neuroparaneuronal control centers of the exocrine pancreas? Arch Histol Jap 49: 411–420.

    Article  PubMed  CAS  Google Scholar 

  • Yoshinaga T, Blank M (1986) Scanning electron microscopic study on isolated islets. Z Mikrosk Anat Forsch 100: 639–644.

    PubMed  CAS  Google Scholar 

  • Baskin DS, Gorray KC, Fujimoto WY (1984) Immunocytochemical identification of cells containing insulin, glucagon, somatostatin, and pancreatic polypeptide in the islets of Langerhans of the guinea pig pancreas with light and electron microscopy. Anat Rec 208: 567–578.

    Article  PubMed  CAS  Google Scholar 

  • Bauer EG (1984) Islets of Langerhans. In: Weiss L (Ed) Modern Concepts of Gastrointestinal Histology. Elsevier, Amsterdam.

    Google Scholar 

  • Larsson LI (1984) Pancreatic polypeptide cells. In: Motta PM (Ed) Ultrastructure of Cells and Tissues. Martinus Nijhoff, Boston.

    Google Scholar 

  • Orci L, Vassalli JD, Perrelet A (1988) The insulin factory. Sci Am 259 /3: 51–61.

    Article  Google Scholar 

  • Wolfe-Coote SA, Du Toit DF (1987) Morphology and endocrine production of cells in the islets of Langerhans of the charma baboon. Anat Rec 218: 56–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krstić, R.V. (1991). Digestive Apparatus. In: Human Microscopic Anatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02676-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02676-2_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08106-4

  • Online ISBN: 978-3-662-02676-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics