Introduction

  • Kyoji Nishikawa
  • Masashiro Wakatani
Part of the Springer Series on Atoms+Plasmas book series (SSAOPP, volume 8)

Abstract

The three states of matter, solid, liquid and gas, are well-known to us. As the temperature is elevated, solid is liquefied and liquid is evaporated to form a gaseous state. If we further increase the temperature, the molecules constituting the gas are decomposed into atoms and the atoms are then decomposed into electrons and positively charged ions. The degree of ionization increases as the temperature rises. For the case of hydrogen gas at normal pressure, the ionization becomes almost complete at about (2 ~ 3) × 104 K. The ionized gas formed in this way is called high-temperature plasma. It consists of a large number of negatively charged light electrons and positively charged heavy ions, both electrons and ions moving with high speed corresponding to high temperature. The net negative charge of the electrons cancels the net positive charge of the ions in the plasma. This is called the overall charge neutrality of the plasma.

Keywords

Electromagnetism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.1
    L. Tonkks, I. Langmuir: Oscillations in Ionized Gases and Note on Oscillations in Ionized Gases, Phys. Rev. 33, 195, 990 (1929)ADSCrossRefGoogle Scholar
  2. 1.2
    A.A. Vlasov: Zh. Eksp. Teor. Fiz 8, 291 (1938)MATHGoogle Scholar
  3. 1.3
    L.D. Landau: On the Vibration of the Electronic Plasma, J. Phys. (USSR) 10, 25 (1946)MATHGoogle Scholar
  4. 1.4
    J.E. Mayer: The Theory of Ionic Solutions, J. Chem. Phys. 18, 1426 (1950)ADSCrossRefGoogle Scholar
  5. 1.5
    R. Balescu: Irreversible Processes in Ionized Gases, Phys. Fluids 3, 52 (1960)MathSciNetADSMATHCrossRefGoogle Scholar
  6. 1.6
    A. Lenard: On Bogoliubov’s Kinetic Equation for a Spatially Homogeneous Plasma, Ann. Phys. 10, 390 (1960)MathSciNetADSMATHCrossRefGoogle Scholar
  7. 1.7
    R.L. Guernsey: Kinetic Equation for a Completely Ionized Gas, Phys. Fluids 5, 322 (1962)MathSciNetADSCrossRefGoogle Scholar
  8. 1.8
    H. Alfven: Comical Electrodynamics (Oxford University Press 1951)Google Scholar
  9. 1.9
    T.G. Cowling: Magnetohydrodynamics (Adam Hilger, Bristol 1976)MATHGoogle Scholar
  10. 1.10
    S.I. Braginskii: Reviews of Plasma Physics, ed. by M.A. Leontovich (Consultants Bureau, New York 1965) p. 205Google Scholar
  11. 1.11
    R.Z. Sagdeev, A.A. Galeev: Nonlinear Plasma Theory (Benjamin, New York 1969)MATHGoogle Scholar
  12. 1.12
    R.C. Davidson: Methods in Nonlinear Plasma Theory (Academic, New York 1972)Google Scholar
  13. 1.13
    V.N. Tsytovich: Nonlinear Effects in Plasma (Plenum, New York 1970)CrossRefGoogle Scholar
  14. 1.14
    V.I. Karpman: Nonlinear Waves in Dispersive Media (Pergamon, Oxford 1975)Google Scholar
  15. 1.15
    J. Weiland, H. Wilhelmsson: Coherent Nonlinear Interaction of Waves in Plasmas (Pergamon, Oxford 1977)Google Scholar
  16. 1.16
    C.F. Kennel, L.J. Lanzerotti, E.N. Parker (eds.): Solar System Plasma Physics, Vol.I, II, III (North-Holland, Amsterdam 1979)Google Scholar
  17. 1.17
    D.B. Melrose: Plasma Astrophysics (Gordon and Breach, New York 1980)Google Scholar
  18. 1.18
    Proc. of the Second United Nations Int. Conf. on the Peaceful Uses of Atomic Energy in Geneva: Theoretical and Experimental Aspects of Controlled Nuclear Fusion, Vol.31; Controlled Fusion Devices, Vol.32 (United Nations Publication, Geneva 1958)Google Scholar
  19. 1.19
    Proceedings of IAEA International Conference on Plasma Physics and Controlled Thermonuclear Fusion Research, Novosibirsk 1968, Vol.1, p. 157Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Kyoji Nishikawa
    • 1
  • Masashiro Wakatani
    • 2
  1. 1.Faculty of ScienceHiroshima UniversityHiroshima 730Japan
  2. 2.Plasma Physics LaboratoryKyoto UniversityKyotoJapan

Personalised recommendations