Advertisement

Toeplitz operators over the quarter-plane

  • Albrecht Böttcher
  • Bernd Silbermann
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

Let 1 ≤ p < ∞ and let Ω be a subset of ℤ k (k = 1, 2, ...).

Keywords

Toeplitz Operator Approximate Identity Index Zero Angular Sector Underlying Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and comments

  1. [1]
    Coburn, L. A., and R. G. Douglas Translation operators on a half-line. Proc. Nat. Acad. Sci. USA 62, 1010–1013 (1969).MathSciNetMATHCrossRefGoogle Scholar
  2. [1]
    Douglas, R. G., and R. Howe On the C*-algebra of Toeplitz operators on the quarter-plane. Trans. Amer. Math. Soc. 158, 203–217 (1971).MathSciNetMATHGoogle Scholar
  3. [1]
    Douglas, R. G., and D Sarason Fredholm Toeplitz operators. Proc. Amer. Math. Soc. 26, 117–120 (1970).Google Scholar
  4. [1]
    Malyshev, V. A. Wiener-Hopf equations on a quadrant, discrete groups, and automorphic functions. Mat. Sb. 84: 3, 499–525 (1971) Russian); also in: Math. USSR Sb. 13, 491–516 (1971).Google Scholar
  5. [2]
    Malyshev, V. A. Wiener-Hopf equations and their applications in probability theory. In: Itogi Nauki: Teor. Veroyatn., Mat. Statistika, Teoret. Kibernetika, Vol. 13, 5–36, VINITI, Moscow 1975 (Russian); Engl. transi.: J. Soviet Math. 7: 2 (1977).Google Scholar
  6. [1]
    Mcdonald, G., and C. Sundbero Toeplitz operators on the disc. Indiana Univ. Math. J. 28: 4, 595–611 (1979). MEISTER, E., and F.-O. SpeckGoogle Scholar
  7. [1]
    Devinatz, A. Toeplitz operators on H2 spaces. Trans. Amer. Math. Soc. 112, 304–317 (1964).Google Scholar
  8. [1]
    Speck, F.-O. General Wiener-Hopf factorization methods. Pitman Research Notes, No. 119, Pitman, Boston, London, Melbourne 1985.Google Scholar
  9. [1]
    Venugopalkrishna, U. Fredholm operators associated with strongly pseudoconvex domains in Cn. J. Funct. Anal. 9, 349–373 (1972).Google Scholar
  10. [3]
    Coburn, L. A. Singular integral operators and Toeplitz operators on odd spheres. Indiana Univ. Math. J. 23, 433–439 (1973).MathSciNetMATHGoogle Scholar
  11. [1]
    Davie, A. M., and N. P. Jewell Toeplitz operators in several complex variables. J.Google Scholar
  12. [1]
    Mcdonald, G. Fredholm properties of a class of Toeplitz operators on the ball. Indiana Univ. Math. J. 26: 3, 567–576 (1977).Google Scholar
  13. [2]
    Mcdonald, G. Toeplitz operators on the ball with piecewise continuous symbol. Illinois J. Math. 23: 2, 286–294 (1979).Google Scholar
  14. [1]
    Mcdonald, G., and C. Sundbero Some multidimensional Wiener-Hopf equations with applications. In: Trends Appl. Pure Math. Mech. 2, 217–262 (1977).Google Scholar
  15. [1]
    Axler, S., D. I. Berg, N. Jewell, and A. Shields Approximation by compact operators and the space H°° +C. Ann. Math. 109, 601–612 (1979).Google Scholar
  16. [2]
    Rudin, W. unction theory in the unit ball of En. Springer-Verlag, Berlin 1980; Russian transi.: Mir, Moscow 1984.Google Scholar
  17. [1]
    Boutet DE Monvel, L., and V. Guillemin The spectral theory of Toeplitz operators. Annals of Math. Series, Vol. 99, Princeton Univ. Press, Princeton 1981.Google Scholar
  18. [1]
    Helton, J. W., and R. E. Howe Integral operators: traces, index, and homology. In: Proc. Conf. Operator Theory, Halifax, Nova Scotia, 1973, P. A. FILLMORE (ed.), 141–209, Lect. Notes Math., Vol. 345, Springer-Verlag, Heidelberg 1973.Google Scholar
  19. [1]
    Goldenshtein, L. S. Criteria for one-sided invertibility of functions of several isometric operators and their ap¬plications. Dokl. Akad. Nauk Sssr 155: 1, 28–31 (1964) (Russian).Google Scholar
  20. [1]
    Goldenshtein, L. S., and I. Gohberg On the multidimensional equation on the half-space with a kernel depending upon the differ¬ence of the arguments and its discrete analogue. Dokl. Akad Nauk Sssr 131: 1, 9–12 (1960) Russian); also in: Sov. Math. Dokl. 1, 173–176 (1960).Google Scholar
  21. [1]
    Duduchava, R. V. Discrete Wiener-Hopf equations in IP spaces with weight. Soobshzh. Akad. Nauk Gruz. SSR 67: 1, 17–20 (1972) (Russian).Google Scholar
  22. [2]
    Duduchava, R. V. On convolution integral operators with discontinuous symbols. Trudy Tbilis. Mat. Inst. 50, 33–41 (1975) (Russian).Google Scholar
  23. [3]
    Duduchava, R. V. On discrete Wiener-Hopf equations. Trudy Tbilis. Mat. Inst. 50, 42–59 (1975) (Russian).Google Scholar
  24. [4]
    Duduchava, R. V. Convolution integral operators on a quadrant with discontinuous symbols. Izv. Akad. Nauk SSSR, Ser. Mat., 40: 2, 388–412 (1976) Russian); also in: Math. USSR Izv. 10: 2, 371–392 (1976).Google Scholar
  25. [5]
    Duduchava, R. V. Discrete convolution operators on the quarter-plane and their indices. Izv. Akad. Nauk SSSR, Ser. Mat., 41: 5, 1125–1137 (1977) Russian); also in: Math. USSR Izv. 11: 5, 1072–1084 (1977).Google Scholar
  26. [6]
    Duduchava, R. V. Discrete convolution operators on the quarter-plane and their indices. Izv. Akad. Nauk SSSR, Ser. Mat., 41: 5, 1125–1137 (1977) Russian); also in: Math. USSR Izv. 11: 5, 1072–1084 (1977).Google Scholar
  27. [1]
    Rabinovich, V. S. The multidimensional Wiener-Hopf equation for cones. In: Teor. Funktsiï, Funkts. Anal. i Prilozh. 5, 59–67, Kharkov 1967 ( Russian).Google Scholar
  28. [1]
    Böttcher, A., and A. E. Pasenchuk On the invertibility of Wiener-Hopf operators on the quarter-plane with kernels whose support is located in a half-plane. In: Differ. Integr. Uravn. Prilozh., 9–19, Izd. Kalmyk. and Rostov. Univ., Elista 1982 ( Russian).Google Scholar
  29. [1]
    Pasenchuk, A. E. On an operator of convolution type in the quarter-plane with a symbol having zeros. Mat. Zametki 20: 4, 559–570 (1976) Russian); also in: Math. Notes 20, 870–877 (1977).Google Scholar
  30. [7]
    Duduchava, R. V. Integral equations with fixed singularities. Teubner-Texte zur Mathematik, Teubner, Leipzig 1979.Google Scholar
  31. [8]
    Duduchava, R. V. On the solution of convolution equations over the quadrant. Mat. Zametki 27: 3, 415–427 (1980) Russian); also in: Math. Notes 27, 207–213 (1980).Google Scholar
  32. [2]
    Pasenchuk, A. E. Two-dimensional discrete operators of convolution type and some of their applications. Cand. Dissert., Rostov-on-Don State Univ. 1978 ( Russian).Google Scholar
  33. [1]
    Heinig, G. Endliche Toeplitzmatrizen und zweiclimensionale Wiener-Hopf-Operatoren mit homogenem Symbol. Math. Nachr. 82, 29–68 (1978).MathSciNetMATHCrossRefGoogle Scholar
  34. [1]
    Pilidi, V. S. On multidimensional bisingular operators. Dokl. Akad. Nauk SSSR 201: 4, 787–789 (1971) Russian); also in: Sov. Math. Dokl. 12, 1723–1726 (1971).Google Scholar
  35. [1]
    Duduchava, R. V., and A. I. Saginashvili Convolution integral operators on a half-line with semi-almost periodic presymbol. Soobshzh. Akad. Nauk Gruz. SSR 98: 1, 21–24 (1980) (Russian).Google Scholar
  36. [1]
    Kozak, A. V. On the reduction method for multidimensional discrete convolutions. Mat. Issled. 8: 3 (29), 157–160 (1973) (Russian).Google Scholar
  37. [2]
    Kozak, A. V. A local principle in the theory of projection methods. Dokl. Akad. Nauk SSSR 212: 6, 1287 to 1289 (1973) Russian); also in: Soviet Math. Dokl. 14, 1580–1583 (1974).Google Scholar
  38. [3]
    Kozak, A. V. Projection methods for the solution of multidimensional equations of convolution type. Cand. Dissert., Rostov-on-Don State Univ. 1974 ( Russian).Google Scholar
  39. [4]
    Kozak, A. V. A local principle in the theory of projection methods. In: Differ. Integr. Uravn. Prilozh., 58–72, Izd. Kalmyk. and Rostov. Univ., Elista 1983 ( Russian).Google Scholar
  40. [1]
    Kozak, A. V., and I. B. Simonenko Projection methods for the solution of multidimensional discrete convolution equations. Sibir. Mat. Zh. 21: 2, 119–127 (1980) (Russian).Google Scholar
  41. [1]
    Böttcher, A. Toeplitzdeterminanten mit singulärer Erzeugerfunktion. Wiss. Informationen 13, TH Karl-Marx-Stadt 1979.Google Scholar
  42. [2]
    Böttcher, A. Toeplitz determinants with piecewise continuous generating function. Z. Anal. Anw. 1: 2, 23–39 (1982).MATHGoogle Scholar
  43. [3]
    Böttcher, A. On some two-dimensional Wiener-Hopf integral equations with a symbol having zeros. Math. Nachr. 109, 195–213 (1982) (Russian).Google Scholar
  44. [4]
    Böttcher, A. Das Reduktionsverfahren für nichtelliptische Wiener-Hopf’sche Integraloperatoren in einer Klasse von topologischen Vektorräumen. Wiss. Z. Tech. Hochsch. Karl-Marx-Stadt 25: 3, 308–312 (1983).MathSciNetMATHGoogle Scholar
  45. [5]
    Böttcher, A. Two-dimensional convolutions in angular sectors with kernels having their support in a half-plane. Mat. Zametki 34: 2, 207–218 (1983) Russian); also in: Math. Notes 34, 585–591 (1984).Google Scholar
  46. [6]
    Böttcher, A. On the Fredholmness and the finite section method for two-dimensional Wiener-Hopf operators with piecewise continuous symbol. Dokl. Akad. Nauk SSSR 273: 6, 1298–1300 (1983) Russian); also in: Soviet Math. Dokl. 28: 3, 773–776 (1983).Google Scholar
  47. [7]
    Böttcher, A. Fredholmness and finite section method for Toeplitz operators on 1p(7L+ x 7L+) with piece-wise continuous symbols. Part I: Z. Anal. Anw. 3: 2, 97–110 (1984); Part II: Z. Anal. Anw. 3: 3, 191–202 (1984).Google Scholar
  48. [8]
    Böttcher, A. The finite section method for Wiener-Hopf integral operators with piecewise continuous symbol in the spaces LP. Funkts. Anal. Prilozh. 18: 2, 55–56 (1984) Russian); also in: Funct. Anal. Appl. 18, 132–133 (1984).Google Scholar
  49. [9]
    Böttcher, A. The finite section method for two-dimensional Wiener-Hopf integral operators in LP with piecewise continuous symbols. Math. Nachr. 116, 61–73 (1984).MathSciNetMATHCrossRefGoogle Scholar
  50. [10]
    Böttcher, A. The finite section method for the Wiener-Hopf integral operator. Cand. Dissert., Rostov-on¬Don State Univ. 1984 ( Russian).Google Scholar
  51. [1]
    Simon, B. Notes on infinite determinants of Hilbert space operators. Adv. Math. 24, 244–273 (1977). SIMONENKO, I. B.Google Scholar
  52. [1]
    Böttcher, A., N. Krupnik, and B Silbermann A general look at local principles with special emphasis on the norm computation aspect. Integral Equations and Operator Theory 11: 4, 455–479 (1988).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Albrecht Böttcher
    • 1
  • Bernd Silbermann
    • 1
  1. 1.Sektion Mathematik, Wissenschaftsbereich AnalysisTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations