Skip to main content

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 11))

  • 336 Accesses

Abstract

Plants of the genus Haworthia belonging to the tribe Aloineae of the Liliaceae are distributed in Southeast Africa and Madagascar; they have bimodal chromosomes, namely large (L) and small (S) chromosomes (2n = 14; 8L + 6S, Sato 1942). The large chromosomes (L1 to L4) can be identified by their respective homologs, whereas the identification of the small individual chromosome (S1 to S3) is not possible with any certainty. This karyotype is widespread throughout the Aloineae, several of which are cultivated for medical use, and have consistent stability, suggesting that strong selection might be operating for the maintenance ofthis basic karyotype. However, plants with chromosomal anomalies such as aneuploids, chromosomal rearrangements including deletions, duplications, paracentric and pericentric inversions, interchanges, and meiotic anomalies, e.g., E-type bridges, subchromatid aberrations, and U-type exchange (Riley and Mukerjee 1962; Riley and Majumder 1966; Brandham 1969, 1970, 1976 ; Vig 1970) can be found in natural populations and they occasionally occupy a certain niche (Brandham 1976; Brandham and Johnson 1977), probably because Haworthia plants are outbreeding and can be propagated vegetatively. This accumulation of knowledge on chromosome variants of Haworthia provides the opportunity to investigate the nature of chromosomal variations of plants regenerated from cultures and found in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia BS (1976) Chromosomal changes in parasexually produced ryegrass. In: Jones K, Brandham PE (eds) Current chromosome research. North Holland, Amsterdam, pp 77–87

    Google Scholar 

  • Bayliss MW (1980) Chromosomal variation in plant tissues in culture. Int Rev Cytol 11A:113–143

    Google Scholar 

  • Bennici A (1979). A cytological chimera in plants regenerated from Lilium longiflorum tissues grown in vitro. Z Pflanzenzücht 82:349–353

    Google Scholar 

  • Bennici A, D’Amato F (1978) In vitro regeneration of durum wheat plants. 1. Chromosome numbers of regenerated plants. Z Pflanzenzücht 81:305–311

    Google Scholar 

  • Brandham PE (1969) Chromosome behaviour in the Aloineae. 1: the nature and significancè of E-type bridge. Chromosoma 27:201–215

    Article  Google Scholar 

  • Brandham PE (1970) Chromosome behaviour in the Aloineae. 3: correlations between spontaneous chromatid and subchromatid aberrations. Chromosoma 31:1–17

    Article  Google Scholar 

  • Brandham PM (1976) The frequency of spontaneous structural change. In: Jones K, Brandham PE (eds) Current chromosome research. North Holland, Amsterdam, pp 77–87

    Google Scholar 

  • Brandham PE, Johnson MAT (1977) Population cytology of structural and numerical chromosome variants in the A loineae (Liliaceae). Plant Syst Evol 128:105–122

    Article  Google Scholar 

  • Braun AC, Wood HN (1976) Suppression of the neoplastic state with the acquisition of specialized functions in cells, tissues, and organ of crown gall teratomas of tobacco. Proc Natl Acad Sci USA 73:496–500

    Article  PubMed  CAS  Google Scholar 

  • Brettel RIS, Dennis ES, Scowcroft WR, Peacock WJ (1986) Molecular analysis of a somaclonal mutant of maize alcohol dehydrogeneae. Mol Gen Genet 202:235–239

    Article  Google Scholar 

  • Chaleff RS (1983) Considerations of developmental biology for plant cellular genetics. In: Kosuge T, Meredith CP (eds) Genetic engineering of plants. Plenum, New York, pp 257–270

    Chapter  Google Scholar 

  • Cooper DB, Sears RG, Lookhart GL, Jones BL (1986) Heritable somaclonal variation in gliadin proteins of wheat plants derived from immature embryo callus culture. Theor Appl Genet 71:784–790

    Article  CAS  Google Scholar 

  • Davies PA, Pallota MA, Ryan SA, Scowcroft WR, Larkin PJ (1986) Somaclonal variation in wheat: genetic and cytogenetic characterization of alcohol dehydrogenase 1 mutants. Theor Appl Genet 72:644–653

    Article  CAS  Google Scholar 

  • Gehring WJ, Hiromi Y (1986) Homeotic genes and the homeobox. Annu Rev Genet 20:147–173

    Article  PubMed  CAS  Google Scholar 

  • Gengenbach BG, Green CE, Donovan CM (1977) Inheritance ofselected pathotoxin-resistance in maize plants regenerated from cell cultures. Proc Natl Acad Sci USA 74:5113–5117

    Article  PubMed  CAS  Google Scholar 

  • Gill BS, Kam-Morgan LNW, Shepard JF (1986) Origin of chromosomal and phenotypic variation in potato protoclones. J Hered 77:13–16

    Google Scholar 

  • Heinz OJ, Mee GWP (1971) Morphologic, cytogenetic, and enzymatic variation in Saccharum species hybrid clones derived from callus tissue. Am J Bot 58:257–262

    Article  Google Scholar 

  • Jackson RC (1965) A cytogenetic study of a three-paired race of Haplopappus gracilis. Am J Bot 52:946–953

    Article  Google Scholar 

  • Jones K (1974) Chromosome evolution by Robertsonian translocation in Gibasis (Commelianaceae). Chromosoma 45:353–368

    Article  Google Scholar 

  • Kao KN, Miller RA, Gamborg OL, Harvey BL (1970) Variations in chromosome number and structure in plant cells grown in suspension cultures. Can J Genet Cytol 12:297–301

    Google Scholar 

  • Karp A, Maddock SE (1984) Chromosome variation in wheat plants regenerated from cultured immature embryos. Theor Appl Genet 67:249–255

    Article  Google Scholar 

  • Kaul K, Sabharwal PS (1972) Morphogenetic studies on Haworthia: Establishment of tissue culture and control of differentiation. Am J Bot 59:377–385

    Article  Google Scholar 

  • King PJ, Potrykus I, Thomas E (1978) In vitro genetics of cereals: Problems and perspectives. Physiol Veg 16:381–399

    Google Scholar 

  • Lapitan N LV, Sears RG, Gill BS (1984) Translocations and other karyotypic structural changes in wheat × rye hybrids regenerated from tissue culture. Theor Appl Genet 68:547–554

    Article  Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation — a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60:197–214

    Article  Google Scholar 

  • Larkin PJ, Brettel RIS, Ryan SA, Davies PA, Pallota MA, Scowcroft WR (1985) Somaclonal variation: impact on plant biology and breeding strategies. In: Day P, Zaitlin M, Hollaender A (eds) Biotechnology in plant science. Relevance to agriculture in the eighties. Academic Press, New York London, pp 83–100

    Chapter  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Majumdar SR (1970) Production of plantlets from the ovary wall of Haworthia turgida var. pallidifolia. Planta 90:212–214

    Article  Google Scholar 

  • Maliga P (1984) Isolation and characterization of mutants in plant cell culture. Annu Rev Plant Physiol 35:519–542

    Article  CAS  Google Scholar 

  • Maliga P, Lazar G, Svab Z, Nagy F (1976) Transient cycloheximide resistance in a tobacco cell line. Mol Gen Genet 149:267–271

    Article  PubMed  CAS  Google Scholar 

  • Maliga P, Kiss ZR, Dix PJ, Lazar G (1979) A streptomycine resistant line of Nicotiana sylvestris unable to flower. Mol Gen Genet 172:13–15

    Article  CAS  Google Scholar 

  • Marton L, Maliga P (1975) Control of resistance in tobacco cells to 5-bromodeoxyuridine by a simple mendelian factor. Plant Sci Lett 5:77–81

    Article  Google Scholar 

  • McCoy TJ, Phillips RL, Rines HW (1982) Cytogenetic analysis of plants regenerated from oat (Avena sativa) tissue cultures: High frequency of partial chromosome loss. Can J Genet Cytol 24:37–50

    Google Scholar 

  • Meins F Jr., Binns A (1977) Epigenetic variation of cultured somatic cells: Evidence for gradual changes in the requirement for factors promoting cell divisions. Proc Natl Acad Sci USA 74:2928–2932

    Article  PubMed  Google Scholar 

  • Mok MC, Gabelman WH, Skoog F (1976) Carotenoid synthesis in tissue cultures of Daucus carota L. J Am Soc Hortic Sci 101:442–449

    CAS  Google Scholar 

  • Murata M, Orton TJ (1983) Chromosome structural changes in cultured celery cells. In vitro 19:83–89

    Article  Google Scholar 

  • Nakamura C, Keller WA (1982) Callus proliferation and plant regeneration from immature embryo of hexaploid Triticale. Z Pflanzenzücht 88:137–164

    Google Scholar 

  • Nishi T, Mitsuoka S (1969) Occurrence of various ploidy plants from anther and ovary culture of rice plant. Jpn J Genet 44:341–346

    Article  Google Scholar 

  • Nishi T, Yamada Y, Takahashi E (1973) The role of auxins in differentiation of rice tissue cultured in vitro. Bot Mag (Tokyo) 86:183–188

    Article  CAS  Google Scholar 

  • Norstog K, Wall WE, Howland GP (1969) Cytological characteristics often-year old ryegrass endosperm tissue cultures. Bot Gaz 130:83–86

    Article  Google Scholar 

  • Novak FJ (1980) Phenotype and cytological status of plants regenerated from callus cultures ofAllium sativum L. Z Pflanzenzücht 84:250–260

    Google Scholar 

  • Novak FJ, Vyskot B(1975) Karyology ofcallus cultures derived from Nicotiana tabacum L. haploids and ploidy of regenerants. Z Pflanzenzücht 75:62–70

    Google Scholar 

  • Ogihara Y (1979) Tissue culture in Haworthia. 2. Effects of three auxins and kinetin on greening and redifferentiation of calluses. Bot Mag (Tokyo) 92:163–171

    Article  CAS  Google Scholar 

  • Ogihara Y (1981) Tissue culture in Haworthia. 4. Genetic characterization of plants regenerated from callus. Theor Appl Genet 60:353–363

    Article  Google Scholar 

  • Ogihara Y (1982a) Tissue culture in Haworthia. 5. Characterization ofchromosomal changes in cultured callus cells. Jpn J Genet 57:499–511

    Article  Google Scholar 

  • Ogihara Y (1982b) Characterization of chromosomal changes of calluses induced by callus cloning and para-fluorophenyl-alanine (PFP) treatment and regenerates from them. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 439–440

    Google Scholar 

  • Ogihara Y, Tsunewaki K (1978) Tissue culture in Haworthia. 1. Effects of auxins and kinetin on callus growth. Bot Mag (Tokyo) 91:83–91

    Article  CAS  Google Scholar 

  • Ogihara Y, Tsunewaki K (1979) Tissue culture in Haworthia. 3. Occurrence of callus variants during subcultures and its mechanism. Jpn J Genet 54:271–293

    Article  Google Scholar 

  • Ogura H (1976) The cytological chimeras in original regenerates from tobacco tissue cultures and in their offsprings. Jpn J Genet 51:161–174

    Article  Google Scholar 

  • Oono K (1985) Putative homozygous mutations in regenerated plants of rice. Mol Gen Genet 198:377–384

    Article  Google Scholar 

  • Orton TJ (1980) Chromosomal variability in tissue cultures and regenerated plant of Hordeum. Theor Appl Genet 56:101–112

    Article  CAS  Google Scholar 

  • Orton TJ (1983) Spontaneous electrophoretic and chromosomal variability in callus cultures and regenerated plants of celery. Theor Appl Genet 67:17–24

    Article  Google Scholar 

  • Orton TJ (1984) Somaclonal variation: theoretical and practical considerations. In: Gustafson JP (ed) Gene manipulation of plant improvement. Plenum, New York, p 427

    Chapter  Google Scholar 

  • Riley HP, Majumder SK (1966) Cytogenetic studies of an aneuploid species of Haworthia with special reference to its origin. J Cytol Genet 1:46–54

    Google Scholar 

  • Riley HP, Mukerjee D (1962) Two aneuploid plants of Haworthia. J Hered 53:105–109

    Google Scholar 

  • Ryan SA, Scowcroft WR (1987) A somaclonal variant of wheat with additional b-amylase isozymes. Theor Appl Genet 73:459–464

    Article  CAS  Google Scholar 

  • Sacristan MD (1975) Cloned development in tumorous cultures of Crepis capillaris. Naturwissenschaften 62:139–140

    Article  PubMed  CAS  Google Scholar 

  • Sacristan MD, Melchers G (1969) The karyological analysis of plants regenerated from tumorous and other callus cultures of tobacco. Mol Gen Genet 105:317–333

    Article  PubMed  CAS  Google Scholar 

  • Sacristan MD, Wendt-Gallitelli MF (1971) Transformation to auxin autotrophy and its reversibility in a mutant line of Crepis capillaris callus culture. Mol Gen Genet 110:355–360

    Article  Google Scholar 

  • Sacristan MD, Wendt-Gallitelli MF (1973) Tumorous cultures of Crepis capillaris; Chromosome and growth. Chromosoma 43:279–288

    Article  Google Scholar 

  • Sato D (1942) Karyotype alteration and phylogeny in Liliaceae and allied families. Jpn J Bot 12:58–161

    Google Scholar 

  • Shepard JF, Bidney D, Shahin E (1980) Potato protoplasts in crop improvement. Science 208:17–24

    Article  PubMed  CAS  Google Scholar 

  • Sheridan WMF (1974) Long-term callus cultures of Lilium. Relative stability of the karyotype. J Cell Biol 63:625

    Google Scholar 

  • Shimada T, Sasakuma T, Tsunewaki K (1969) In vitro culture ofwheat tissues. 1. Callus formation, organ redifferentiation and single cell culture. Can J Genet Cytol 11:294–304

    CAS  Google Scholar 

  • Singh BD, Harvey BL, Kao KN, Miller RA (1972) Selection pressure in cell population of Vicia hajastana cultured in vitro. Can J Genet Cytol 14:65–70

    Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Svmp Soc Exp Biol 11:118–140

    CAS  Google Scholar 

  • Sree Ramulu K, Devreux M, Ancora G, Laneri U (1976) Chimerism in Lycopersicum peruvianum plants regenerated from in vitro cultures of anthers and stem internodes. Z Pflanzenzücht 76:299–319

    Google Scholar 

  • Sunderland N (1977) Nuclear cytology. In: Street HE (ed) Plant tissue and cell culture. Blackwell, Oxford, pp 177–205

    Google Scholar 

  • Vig BK (1970) Sub-chromatid aberrations in Haworthia attenuata. Can J Genet Cytol 12:181–186

    Google Scholar 

  • Yamabe M, Yamada T (1973) Studies on differentiation in cultured cells. 2. Chromosomes of Haworthia callus and of the plants grown from the callus. Kromosoma 94:2923–2931

    Google Scholar 

  • Zagorska NA, Shamina ZB, Butenko RG (1974) The relationship of morphogenetic potency of tobacco tissue culture and its cytogenetic features. Biol Plant 16:262–274

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ogihara, Y. (1990). Somaclonal Variation in Haworthia . In: Bajaj, Y.P.S. (eds) Somaclonal Variation in Crop Improvement I. Biotechnology in Agriculture and Forestry, vol 11. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02636-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02636-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08077-7

  • Online ISBN: 978-3-662-02636-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics