Skip to main content

Mass Spectrometry and Stable Isotopes

  • Chapter
Inborn Metabolic Diseases
  • 286 Accesses

Summary

Investigation of inherited metabolic disorders requires methods which have the ability to apply to a vast array of metabolites of different chemical classes, unambiguously identify known as well as previously unknown metabolites, precisely quantify the substrates in question in a variety of body fluids, and quantitfy the movement (kinetics) of these materials along known biochemical pathways both within tissues and between organ systems via the blood stream. Furthermore, since most investigations of inborn errors take place in infants and young children, the methodological approaches should also be non- or only minimally invasive and require only small blood samples. The combined use of mass spectrometry and stable isotope tracers satisfies all of these requirements and is the most sensitive, specific, general analytic approach available to the biomedical investigator today.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McLafferty FW (1984) Trends in analytical instrumentation. Science 226: 251–253

    Article  PubMed  CAS  Google Scholar 

  2. Burlingame AL, Maltby D, Russell DH, Holland PT (1988) Mass spectrometry. Anal Chem 60: 294R–342R

    Article  PubMed  CAS  Google Scholar 

  3. Cotter RJ (1988) Plasma desorption mass spectrometry: coming of age. Anal Chem 60: 781A–793A

    PubMed  CAS  Google Scholar 

  4. Cotter RJ (1989) Time-of-flight Mass Spectrometry: An Increasing Role in The Life Sciences. Biomed Environ Mass Spectrom 18: 513–532

    Article  PubMed  CAS  Google Scholar 

  5. McLafferty FW (1980) Interpretation of mass spectra. University Science Books, Mill Valley

    Google Scholar 

  6. Goodman SI, Markey SP (1981) Diagnosis of organic acidemias by gas chromatography-mass spectrometry. Liss, New York

    Google Scholar 

  7. Marner OA, Crawhall JC, Tjoa SS (1971) The identification of urinary acids by coupled gas chromatography-mass spectrometry. Clin Chim Acta 32: 171–184

    Article  Google Scholar 

  8. Hunt DF, Giordani AB, Rhodes G, Herold DA (1982) Mixture analysis by triplequadrupole mass spectrometry: metabolic profiling of urinary carboxylic acids. Clin Chem 28: 2387–2392

    PubMed  CAS  Google Scholar 

  9. Shackleton CH (1985) Mass spectrometry: application to steroid and peptide research. Endocr Rev 6: 441–486

    Article  PubMed  CAS  Google Scholar 

  10. Holland JF, Leary JJ, Sweeley CC (1986) Advanced instrumentation and strategies for metabolic profiling. J Chromatogr 379: 3–26

    Article  PubMed  CAS  Google Scholar 

  11. Jellum E, Kvittingen EA, Thoresen O, Guldal G, Horn L, Seip R, Stokke 0 (1986) Systematic laboratory diagnosis of human metabolic disorders. Scand J Clin Lab Invest [Suppl] 184: 11–20

    CAS  Google Scholar 

  12. Jellum E, Kvittingen EA, Stokke 0 (1988) Mass spectrometry in diagnosis of metabolic disorders. Biomed Environ Mass Spec 16: 57–62

    Article  CAS  Google Scholar 

  13. Bier DM (1987) The use of stable isotopes in metabolic investigation. Baillière’s Clin Endocrinol Metab 1: 817–836

    Article  PubMed  CAS  Google Scholar 

  14. Matthews DE, Bier DM (1983) Stable isotope methods for nutritional investigation. Annu Rev Nutr 3: 309–339

    Article  PubMed  CAS  Google Scholar 

  15. Waterlow JC, Garlick Pi, Millward DJ (1978) Protein turnover in mammalian tissues and in the whole body. North-Holland, Amsterdam

    Google Scholar 

  16. Frazer TE, Karl 1E, Hillmann LS, Bier DM (1981) Direct measurement of gluconeogenesis from L-[2,3-j3C,]alanine in the human neonate during the first eight hours of life. Am J Physiol 240: E615–E621

    CAS  Google Scholar 

  17. Bougnères PF, Karl IE, Hillmann LS, Bier DM (1982) Lipid transport in the human newborn: palmitate and glycerol turnover and the contribution of glycerol to neonatal hepatic glucose output. J Clin Invest 70: 262–270

    Article  PubMed  Google Scholar 

  18. Tanaka K, Armitage 1M, Ramsdell HS, Hsia YE, Lipsky SR, Rosenberg LE (1975) InC] Valine metabolism in methylmalonic acidemia using nuclear magnetic resonance: identification of propionate as an obligate intermediate. Proc Natl Acad Sci USA 72: 3692–3697

    CAS  Google Scholar 

  19. Marner OA, Tjoa SS, Scriver CR, Klassen GA (1976) Demonstration of a new mammalian isoleucine catabolic pathway yielding an R series of metabolites. Biochem J 160: 417–423

    Google Scholar 

  20. Matthews DE, Ben Galim E, Haymond MW, Bier DM (1980) Alloisoleucine formation in Maple Syrup Urine Disease: isotopic evidence for the mechanism. Pediatr Res 41: 854–857

    Google Scholar 

  21. Matthews DE, Bier DM, Rennie MJ, Edwards RH, Halliday D (1981) Regulation of leucine metabolism in man: a stable isotope study. Science 214: 1129–1131

    Article  PubMed  CAS  Google Scholar 

  22. Staten MA, Bier DM, Matthews DE (1984) Regulation of valine metabolism in man: a stable isotope study. Am J Clin Nutr 40: 1224–1234

    PubMed  Google Scholar 

  23. Kalhan SC, D’Angelo LJ, Savin SM, Adam PAJ (1979) Glucose production in pregnant women at term gestation: sources of glucose for human fetus. J Clin Invest 63: 388–394

    Article  PubMed  CAS  Google Scholar 

  24. Kalhan SC, Tserng KY, Gilfillan C, Dierker LJ (1982) Metabolism of urea and glucose in normal and diabetic pregnancy. Metabolism 31: 824–833

    Article  PubMed  CAS  Google Scholar 

  25. Cowett RM, Susa JB, Kahn CB, Giletti B, Oh W, Schwartz R (1983) Glucose kinetics in nondiabetic and diabetic women during the third trimester of pregnancy. Am J Obstet Gynecol 146: 773–780

    PubMed  CAS  Google Scholar 

  26. Cowett RM (1985) Hepatic and peripheral responsiveness to a glucose infusion in pregnancy. Am J Obstet Gynecol 153: 272–279

    PubMed  CAS  Google Scholar 

  27. Motif KJ, Montandon CM, Hachey DL, Boutton TW, Klein PD, Garza C (1989) Whole-body protein metabolism in lactating and nonlactating women. J Appl Physiol 66: 370–376

    Google Scholar 

  28. Schoenheimer R (1942) The dynamic state of body constituents. Harvard University Press, Cambridge

    Google Scholar 

  29. Klein PD, Klein ER (1986) Stable isotopes: origins and safety. J Clin Pharmacol 26: 378–382

    PubMed  CAS  Google Scholar 

  30. Watts RWE, Crawhall JC (1959) The first glycine metabolic pool in man. Biochem J 73: 277–284

    PubMed  CAS  Google Scholar 

  31. Cryer DR, Matsushima T, Marsh JB, Yudkoff M, Coates PM, Cortner JA (1986) J Lipid Res 27: 508–516

    PubMed  CAS  Google Scholar 

  32. Schauder P, Arends J, Schäfer G, Langer K, Bier DM (1989) Einbau von 15N-Glyzin in VLDL und LDL: In-vivo-Synthese von Apolipoprotein B beim Menschen postabsorptiv und im Fastenzustand. Klin Wochenschr 67: 280–285

    Google Scholar 

  33. Yudkoff M, Nissim I, McNellis W, Polin R (1987) Albumin synthesis in premature infants: determination of turnover with [15N]glycine. Pediatr Res 21: 49–53

    Article  PubMed  CAS  Google Scholar 

  34. Polin RA, Yoder MC, Douglas SD, McNelis W, Nissim I, Yudkoff M (1989) Fibronectin turnover in the premature neonate measured with [ISN]glycine. Am J Clin Nutr 49: 314–319

    PubMed  CAS  Google Scholar 

  35. Hellerstein MK, Greenblatt DJ, Munro HN (1986) Glycoconjugates as noninvasive probes of intrahepatic metabolism: pathways of glucose entry into compartmentalized hepatic UDP-glucose pools during glycogen accumulation. Proc Natl Acad Sci USA 83: 7044–7048

    Article  PubMed  CAS  Google Scholar 

  36. Magnusson I, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR (1987) Quantitation of the pathways of hepatic glycogen formation on investing a glucose load. J Clin Invest 80: 1748–1754

    Article  PubMed  CAS  Google Scholar 

  37. Magnusson I, Chandramouli V, Schumann WC, Kumaran K, Wahren J, Landau BR (1988) Pentose pathway in human liver. Proc Natl Acad Sci USA 85: 4682–4685

    Article  PubMed  CAS  Google Scholar 

  38. Hellerstein MD, Wu K, Kaempfer S, Lee WP, Reid S, Shackleton CHL (1989) Non-invasive studies of intrahepatic metabolism in humans using mass spectrometry (MS). I) Glucuronide (GIuUA) probe. Diabetes 38 (S2): 57A

    Google Scholar 

  39. Wu K, Kaempfer S, Reid S, Shackelton CHL, Hellerstein MK (1989) Non-invasive studies of intrahepatic metabolism in humans using mass spectrometry (MS). II) Acetyl probe. Diabetes 38 (S2): 22A

    Google Scholar 

  40. Cobelli C, Toffolo G, Bier DM, Nosadini R (1987) Models to interpret kinetic data in stable isotope tracer studies. Am J Physiol 253: E551–E564

    PubMed  CAS  Google Scholar 

  41. Avogaro A, Bristow JD, Bier DM, Cobelli C, Toffolo G (1989) The stable label intravenous glucose tolerance test minimal model. Diabetes 38: 1048–1055

    Article  PubMed  CAS  Google Scholar 

  42. Schoeller DA, Ravussin E, Schutz Y, Acheson KJ, Baertschi P, Jequier E (1986) Energy-expenditure by doubly-labeled water: validation in humans and proposed calculation. Am J Physiol 250: R832–R830

    Google Scholar 

  43. Bier DM, Young VR (1986) Assessment of whole body protein-nitrogen kinetics in the human infant. In: Fomon SJ, Heird WC (eds) Energy and protein needs during infancy. Academic, Orlando, p 107

    Google Scholar 

  44. Cauderay M, Schutz Y, Micheli JL, Calame A, Jéquier E (1988) Energy-nitrogen balances and protein turnover in small and appropriate for gestational age low birthweight infants. Eur J Clin Nutr 42: 125–136

    PubMed  CAS  Google Scholar 

  45. Young VR, Bier DM (1987) A kinetic approach to the determination of human amino acid requirements. Nutr Rev 45: 289–298

    Article  PubMed  CAS  Google Scholar 

  46. Bier DM, Young VR (1987) A kinetic approach to assessment of amino acid and protein replacements needs of individual sick patients. J Parenteral Enteral Nutr 11: 95S - 97S

    Article  CAS  Google Scholar 

  47. Meguid MM, Matthews DE, Bier DM, Meredith CN, Soeldner JS, Young VR (1986) Leucine kinetics at graded leucine intakes in young men. Am J Clin Nutr 43: 770–780

    PubMed  CAS  Google Scholar 

  48. Meguid MM, Mathews DE, Bier DM, Meredith CN, Young VR (1986) Valine kinetics at graded valine intakes in young men. Am J Clin Nutr 43: 781–786

    PubMed  CAS  Google Scholar 

  49. Meredith CN, Wen ZM, Bier DM, Matthews DE, Young VR (1986) Lysine kinetics at graded lysine intakes in young men. Am J Clin Nutr 43: 787–794

    PubMed  CAS  Google Scholar 

  50. Zhao XH, Wen ZM, Meredith CN, Matthews DE, Bier DM, Young VR (1986) Threonine kinetics at graded threonine intakes in young men. Am J Clin Nutr 43: 795–802

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bier, D.M. (1990). Mass Spectrometry and Stable Isotopes. In: Fernandes, J., Saudubray, JM., Tada, K. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02613-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02613-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02615-1

  • Online ISBN: 978-3-662-02613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics