Skip to main content

Disorders of Purine and Pyrimidine Metabolism

  • Chapter
Inborn Metabolic Diseases

Summary

Inborn errors of purine and pyrimidine metabolism manifest themselves by a variety of clinical pictures. Table I gives a list of the major presenting signs and laboratory results that should lead to further investigations to rule out or to confirm the diagnostic possibilities listed. All inborn errors of purine and pyrimidine metabolism are very rare. Their recognition is, nevertheless, important for the provision of both appropriate treatment and genetic counseling. Some of the enzyme defects are benign but several have severe, life-threatening or devastating consequences. Whereas some of the disorders are amenable to treatment, others remain beyond the presently available therapeutic possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sperling O, Boer P, Persky-Brosh S, Kanarek E, de Vries A (1972) Altered kinetic property of erythrocyte phosphoribosylpyrophosphate synthetase in excessive purine production. Rev Eur Etud Clin Biol 27: 703–706

    Google Scholar 

  2. Becker MA, Losman MJ, Rosenberg AL, Mehlman I, Levinson DJ, Holmes EW (1986) Phosphoribosylpyrophosphate synthetase superactivity. A study of five patients with catalytic defects in the enzyme. Arthritis Rheum 29: 880–888

    Google Scholar 

  3. Becker MA, Puig JG, Mateos FA, Jimenez ML, Kim M, Simmonds HA (1988) Inherited superactivity of phosphoribosylpyrophosphate synthetase: association of uric acid overproduction and sensorineural deafness. Am J Med 85: 383–390

    Article  PubMed  CAS  Google Scholar 

  4. Kranen S, Keough D, Gordon RB, Emmerson BT (1985) Xanthine-containing calculi during allopurinol therapy. J Urol 133: 658–659

    PubMed  CAS  Google Scholar 

  5. Jaeken J, van den Berghe G (1984) An infantile autistic syndrome characterised by the presence of succinylpurines in body fluids. Lancet 2: 1058–1061

    PubMed  CAS  Google Scholar 

  6. Van den Berghe G, Jaeken J (1986) Adenylosuccinase deficiency. Adv Exp Med Biol 195A: 27–33

    Article  PubMed  Google Scholar 

  7. De Voider AG, Jaeken J, van den Berghe G, Bol A, Michel C et al. (1988) Regional brain glucose utilization in adenylosuccinase-deficient patients measured by positron emission tomography. Pediatr Res 24: 238–242

    Article  Google Scholar 

  8. Jaeken J, Wadman SK, Duran M, van Sprang FJ, Beemer FA et al. (1988) Adenylosuccinase deficiency: an inborn error or purine nucleotide synthesis. Eur J Pediatr 148: 126–131

    Article  PubMed  CAS  Google Scholar 

  9. De Bree PK, Wadman SK, Duran M, Fabery de Jonge H (1986) Diagnosis of inherited adenylosuccinase deficiency by thin-layer chromatography of urinary imidazoles and by automated cation exchange column chromatography of purines. Clin Chim Acta 156: 279–288

    Article  PubMed  Google Scholar 

  10. Laikind PK, Seegmiller JE, Gruber HE (1986) Detection of 5’-phosphoribosyl-4-(N-succinylcarboxamide)-5-aminoimidazole in urine by use of the Bratton Marshall reaction: identification of patients deficient in adenylosuccinate lyase activity. Anal Biochem 156: 81–90

    Article  PubMed  CAS  Google Scholar 

  11. Lowenstein JM (1972) Ammonia production in muscle and other tissues: the purine nucleotide cycle. Physiol Rev 52: 382–414

    CAS  Google Scholar 

  12. Flanagan WF, Holmes EW, Sabina RL, Swain JL (1986) Importance of purine nucleotide cycle to energy production in skeletal muscle. Am J Physiol 251: C795 - C802

    PubMed  CAS  Google Scholar 

  13. Hers HG, van den Berghe G (1979) Enzyme defect in primary gout. Lancet 1: 585–586

    Article  PubMed  CAS  Google Scholar 

  14. Van den Berghe G, Hers HG (1980) Abnormal AMP deaminase in primary gout. Lancet 2: 1090

    PubMed  Google Scholar 

  15. Ogasawara N, Goto H, Yamada Y, Nishigaki I, Itoh T, Hasegawa I (1984) Complete deficiency of AMP deaminase in human erythrocytes. Biochem Biophys Res Commun 122: 1344–1349

    Article  PubMed  CAS  Google Scholar 

  16. Fishbein WN, Armbrustmacher VW, Griffin JL (1978) Myoadenylate deaminase deficiency: a new disease of muscle. Science 200: 545–548

    Article  PubMed  CAS  Google Scholar 

  17. Shumate JB, Katnik R, Ruiz M, Kaizer K, Frieden C et al (1979) Myoadenylate deaminase deficiency. Muscle Nerve 2: 213–216

    Article  PubMed  CAS  Google Scholar 

  18. Mercelis R, Martin JJ, de Barsy T, van den Berghe G (1987) Myoadenylate deaminase deficiency: absence of correlation with exercise intolerance in 452 muscle biopsies. J Neurol 234: 385–389

    Article  PubMed  CAS  Google Scholar 

  19. Patten BM (1982) Beneficial effect of D-ribose in patient with myoadenylate deaminase deficiency. Lancet 1: 1071

    Article  PubMed  CAS  Google Scholar 

  20. Mitchell BS, Kelley WN (1980) Purinogenic immunodeficiency diseases: clinical features and molecular mechanisms. Ann Intern Med 92: 826–831

    PubMed  CAS  Google Scholar 

  21. Hirschhorn R (1983) Genetic deficiencies of adenosine deaminase and purine nucleoside phosphorylase: overview, genetic heterogeneity and therapy. Birth Defects 19: 73–81

    PubMed  CAS  Google Scholar 

  22. Valentine WN, Paglia DE, Tartaglia AP, Gilsanz F (1977) Hereditary hemolytic anemia with increased red cell adenosine deaminase (45- to 70-fold) and decreased adenosine triphosphate. Science 195: 783–785

    Article  PubMed  CAS  Google Scholar 

  23. Giblett ER, Anderson JE, Cohen F, Pollara B, Meuwissen HJ (1972) Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2: 1067–1069

    Article  PubMed  CAS  Google Scholar 

  24. Fischer A, Friedrich W, Levinsky R, Vossen J, Griscelli C et al (1986) Bone-marrow transplantation for immunodeficiencies and osteopetrosis: European survey, 1968–1985. Lancet 2: 1080–1084

    Article  PubMed  CAS  Google Scholar 

  25. Marker(ML, Hershfield MS, Schiff RI, Buckley RH (1987) Adenosine deaminase and purine nucleoside phosphorylase deficiencies: evaluation of therapeutic interventions in eight patients. J Clin Immunol 7: 389–399

    Article  Google Scholar 

  26. Hershfield MS, Buckley RH, Greenberg ML, Melton AL, Schiff R et al (1987) Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N Engl J Med 316: 589–596

    Article  PubMed  CAS  Google Scholar 

  27. Williamson AP, Montgomery JR, South MA, Wilson R (1977) A special report: four-year study of a boy with combined immune deficiency maintained in strict reverse isolation from birth. Pediatr Res 11: 63–89

    Article  Google Scholar 

  28. Giblett ER, Ammann AJ, Wara DW, Sandman R, Diamond LK (1975) Nucleoside phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1: 1010–1013

    Article  PubMed  CAS  Google Scholar 

  29. Staal GEJ, Stoop JW, Zegers BJM, Siegenbeek van Heukelom LH, van der Vlist MJM et al (1980) Erythrocyte metabolism in purine nucleoside phosphorylase deficiency after enzyme replacement therapy by infusion of erythrocytes. J Clin Invest 65: 103–108

    Article  PubMed  CAS  Google Scholar 

  30. Dent CE, Philpot GR (1954) Xanthinuria, an inborn error (or deviation) of metabolism. Lancet 1: 182–185

    Article  Google Scholar 

  31. Wadman SK, Duran M, Beemer FA, Cats BP, Johnson JL et al (1983) Absence of hepatic molybdenum cofactor: an inborn error of metabolism leading to a combined deficiency of sulphite oxidase and xanthine dehydrogenase. J Inherited Metab Dis 6 Suppl 1: 78–83

    Article  Google Scholar 

  32. Shih VE, Abroms IF, Johnson JL, Carney M, Mandell R et al (1977) Sulfite oxidase deficiency. Biochemical and clinical investigations of a hereditary metabolic disorder in sulfur metabolism. N Engl J Med 297: 1022–1028

    Google Scholar 

  33. Endres W, Shin YS, Günther R, Ibel H, Duran M, Wadman SK (1988) Report on a new patient with combined deficiencies of sulphite oxidase and xanthine dehydrogenase due to molybdenum cofactor deficiency. Eur J Pediatr 148: 246–249

    Article  PubMed  CAS  Google Scholar 

  34. Lloyd KG, Hornykiewicz O, Davidson L, Shannak K, Farley I et al (1981) Biochemical evidence of dysfunction of brain neurotransmitters in the Lesch-Nyhan syndrome. N Engl J Med 305: 1106–1111

    Article  PubMed  CAS  Google Scholar 

  35. Lesch M, Nyhan WL (1964) A familial disorder of uric acid metabolism and central nervous system dysfunction. Am J Med 36: 561–570

    Article  PubMed  CAS  Google Scholar 

  36. Kelley WN, Greene ML, Rosenbloom FM, Henderson JF, Seegmiller JE (1969) Hypoxanthine-guanine phosphoribosyltransferase deficiency in gout. Ann Intern Med 70: 155–206

    PubMed  CAS  Google Scholar 

  37. Kaufman JM, Greene ML, Seegmiller JE (1968) Urine uric acid to creatinine ratio. A screening test for inherited disorders of purine metabolism. Phosphoribosyltransferase ( PRT) deficiency in X-linked cerebral palsy and in a variant of gout. J Pediatr 73: 583–592

    Google Scholar 

  38. Holland PC, Dillon MJ, Pincott J, Simmonds HA, Barratt TM (1983) Hypoxanthine guanine phosphoribosyl transferase deficiency presenting with gout and renal failure in infancy. Arch Dis Child 58: 831–833

    Article  PubMed  CAS  Google Scholar 

  39. Seegmiller JE, Rosenbloom FM, Kelley WN (1967) Enzyme defect associated with a sex-linked human neurological disorder and excessive purine synthesis. Science 155: 1682–1684

    Article  PubMed  CAS  Google Scholar 

  40. Page T, Bakay B, Nissinen E, Nyhan WL (1981) Hypoxanthine-guanine phosphoribosyltransferase variants: correlation of clinical phenotype with enzyme activity. J Inherited Metab Dis 4: 203–206

    Article  PubMed  CAS  Google Scholar 

  41. Watts RWE, McKeran RO, Brown E, Andrews TM, Griffiths MI (1974) Clinical and biochemical studies on treatment of Lesch-Nyhan syndrome. Arch Dis Child 49: 693–702

    Article  PubMed  CAS  Google Scholar 

  42. Nyhan WL, Parkman R, Page T, Gruber HE, Pyati J et al (1986) Bone marrow transplantation in Lesch-Nyhan disease. Adv Exp Med Biol 195A: 167–170

    Article  PubMed  Google Scholar 

  43. Wilson JM, Stout JT, Palella TD, Davidson BL, Kelley WN, Caskey CT (1986) A molecular survey of hypoxanthine-guanine phosphoribosyltranferase deficiency in man. J Clin Invest 77: 188–195

    Article  PubMed  CAS  Google Scholar 

  44. Cartier P, Hamet M (1974) Une nouvelle maladie métabolique: le déficit complet en adénine-phosphoribosyltransférase avec lithiase de 2,8-dihydroxyadénine. C R Acad Sci [D] (Paris) 279: 883–886

    CAS  Google Scholar 

  45. Van Acker KJ, Simmonds HA, Potter C, Cameron JS (1977) Complete deficiency of adenine phosphoribosyltransferase. Report of a family. N Engl J Med 297: 127–132

    Google Scholar 

  46. Greenwood MC, Dillon MJ, Simmonds HA, Barratt TM, Pincott JR, Metreweli C (1982) Renal failure due to 2,8-dihydroxyadenine urolithiasis. Eur J Pediatr 138: 346–349

    Article  PubMed  CAS  Google Scholar 

  47. Kamatani N, Terai C, Kuroshima S, Nishioka K, Mikanagi K (1987) Genetic and clinical studies on 19 families with adenine phosphoribosyltransferase deficiencies. Hum Genet 75: 163–168

    Article  PubMed  CAS  Google Scholar 

  48. Fujimori S, Akaoka I, Sakamoto K, Yamanaka H, Nishioka K, Kamatani N (1985) Common characteristics of mutant adenine phosphoribosyltransferases from four separate Japanese families with 2,8-dihydroxyadenine urolithiasis associated with partial enzyme deficiencies. Hum Genet 71: 171–176

    Article  PubMed  CAS  Google Scholar 

  49. Hidaka Y, Tarlé SA, Fujimori S, Kamatani N, Kelley WN, Palella TD (1988) Human adenine phosphoribosyltransferase deficiency. Demonstration of a single mutant allele common to the Japanese. J Clin Invest 81: 945–950

    Google Scholar 

  50. Valentine WN, Fink K, Paglia DE, Harris SR, Adams WS (1974) Hereditary hemolytic anemia with human erythrocyte pyrimidine 5’-nucleotidase deficiency. J Clin Invest 54: 866–879

    Article  PubMed  CAS  Google Scholar 

  51. Smith LH (1973) Pyrimidine metabolism in man. N Engl J Med 288: 764–771

    Article  PubMed  CAS  Google Scholar 

  52. Huguley CM, Bain JA, Rivers SL, Scoggins RB (1959) Refractory megloblastic anemia associated with excretion of orotic acid. Blood 14: 615–634

    PubMed  Google Scholar 

  53. Rogers LE, Warford LR, Patterson RB, Porter FS (1968) Hereditary orotic aciduria. I. A new case with family studies. Pediatrics 42: 415–422

    Google Scholar 

  54. Winkler JK, Suttle DP (1988) Analysis of UMP synthase gene and mRNA structure in hereditary orotic aciduria fibroblasts. Am J Hum Genet 43: 86–94

    PubMed  CAS  Google Scholar 

  55. Berger R, Stoker-de Vries SA, Wadman SK, Duran M, Beemer FA et al (1984) Dihydropyrimidine dehydrogenase deficiency leading to thymine-uraciluria. An inborn error of pyrimidine metabolism. Clin Chim Acta 141: 227–234

    Google Scholar 

  56. Tuchman M, Stoeckeler JS, Kiang DT, O’Dea RF, Ramnaraine ML, Mirkin BL (1985) Familial pyrimidinemia and pyrimidinuria associated with severe fluorouracil toxicity. N Engl J Med 313: 245–249

    Article  PubMed  CAS  Google Scholar 

  57. Wilcken B, Hammond J, Berger R, Wise G, James C (1985) Dihydropyrimidine dehydrogenase deficiency. A further case. J Inherited Metab Dis 8 Suppl 2: 115–116

    Article  Google Scholar 

  58. Diasio RB, Beavers TL, Carpenter JT (1988) Familial deficiency of dihydropyrimidine dehydrogenase. Biochemical basis for familial pyrimidinemia and severe 5-fluorouracilinduced toxicity. J Clin Invest 81: 47–51

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van den Berghe, G. (1990). Disorders of Purine and Pyrimidine Metabolism. In: Fernandes, J., Saudubray, JM., Tada, K. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02613-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02613-7_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02615-1

  • Online ISBN: 978-3-662-02613-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics