Phenylketonuria and Hyperphenylalaninemia

  • F. Güttler
  • H. Lou


Untreated phenylketonuria (PKU) causes intellectual deterioration, seizures, various neuropsychiatric symptoms, defects in pigmentation, eczema, and a characteristic “musty” odor. Today, most neonates are screened for hyperphenylalaninemia, which includes PKU. The incidence of PKU is on average one in 10 000 births. A low-phenylalanine diet introduced within the first weeks of life prevents the symptoms of this disease provided the treatment is well controlled and blood phenylalanine does not exceed normal levels too frequently during the first 8 years of life. Discontinuation of the diet at the age of 15 years may be feasible for some, but an increasing number of treatment centers recommend a relaxed dietary regime in patients with classical PKU. PKU is caused by a monogenic autosomal recessive defect of hepatic phenylalanine hydroxylase, which catalyzes the irreversible conversion of phenylalanine to tyrosine. The defect causes accumulation of phenylalanine and its metabolites, e. g., phenylpyruvate, leading to phenylketonuria and phenylacetate responsible for a “musty” odor in untreated patients. Different mutations in the gene coding for phenylalanine hydroxylase correlate with different phenotypes of the disease, i. e., classical PKU, milder forms of PKU, and benign persistent hyperphenylalaninemia.


Phenylalanine Hydroxylase Blood Phenylalanine Plasma Phenylalanine Dihydropteridine Reductase Phenylalanine Hydroxylase Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Følling A (1934) Über Ausscheidung von Phenylbrenztraubensäure in den Ham als Stoffwechselanomalie in Verbindung mit Imbezillität. Z Physiol Chem 227: 169 – 176CrossRefGoogle Scholar
  2. 2.
    Güttler F (1984) Phenylketonuria: 50 years since Foiling’s discovery and still expanding our clinical and biochemical knowledge. Acta Paediatr Scand 73: 705 – 716PubMedCrossRefGoogle Scholar
  3. 3.
    Scriver CR, Kaufman S, Woo SLC (1988) Mendelian hyperphenylalaninemia. Annu Rev Genet 22: 301 – 321PubMedCrossRefGoogle Scholar
  4. 4.
    Smith 1 (1985) The hyperphenylalaninaemias. In: Lloyd JK, Scriver CR (eds) Genetic and metabolic disease. Butterworths, London, pp 166–209 ( Butterworth’s International Medical Reviews, Pediatrics 5 )Google Scholar
  5. 5.
    Scriver CR, Kaufman S, Woo SLC (1989) The hyperphenylalaninemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw Hill, New York, pp 495 – 546Google Scholar
  6. 6.
    Jervis GA (1947) Studies on phenylpyruvic oligophrenia. The position of the metabolic error. J Biol Chem 169: 651 – 656PubMedGoogle Scholar
  7. 7.
    Jervis GA (1953) Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proc Soc Exp Biol Med 82: 514 – 515PubMedGoogle Scholar
  8. 8.
    Kaufman S, Fischer DB (1974) Pterin-requiring aromatic amino acid hydroxylases. In: Hayaishi O (ed) Molecular mechanisms of oxygen activation. Academic, New York, pp 285 – 327Google Scholar
  9. 9.
    McKean CM (1972) The effects of high phenylalanine concentrations on the serotonin and catecholamine metabolism in the human brain. Brain Res 47: 469 – 476PubMedCrossRefGoogle Scholar
  10. 10.
    Tong JH, Kaufman S (1975) Tryptophan hydroxylase: purification and some properties of the enzyme from rabbit hindbrain. J Biol Chem 250: 4152 – 4158PubMedGoogle Scholar
  11. 11.
    Kaufman S (1976) Phenylketonuria: biochemical mechanisms. In: Aranoff BW, Aprison MH (eds) Advances in neurochemistry, vol 2. Plenum, New York, pp 1 – 132Google Scholar
  12. 12.
    Sandler M (1982) Inborn errors and disturbances of central neurotransmission (with special reference to phenylketonuria). J Inherited Metab Dis 5: 65 – 70CrossRefGoogle Scholar
  13. 13.
    Kaufman S (1983) Phenylketonuria and its variants. In: Harris H, Hirschhorn K (eds) Advances in human genetics, vol 13. Plenum, New York, pp 217 – 297CrossRefGoogle Scholar
  14. 14.
    Gaull GE, Tallan HH, Lajtha A, Rassin DK (1975) Pathogenesis of brain dysfunction in inborn errors of amino acid metabolism. In: Gaull GE (ed) Biology of brain dysfunction, vol 3. Plenum, New York, pp 47 – 109CrossRefGoogle Scholar
  15. 15.
    Nordyke EL, Roach MK (1974) Effect of hyperphenylalaninemia on amino acid metabolism and compartmentation in neonatal rat brain. Brain Res 67: 479 – 488PubMedCrossRefGoogle Scholar
  16. 16.
    Güttler F, Lou H (1986) Dietary problems of phenylketonuria: effect on CNS transmitters and their possible role in behaviour and neuropsychological function. J Inherited Metab Dis 9: 169–177 (Acta Paediatr Scand 61: 321–328)Google Scholar
  17. 17.
    Nielsen JB, Lou HC, Güttler F (1988) Effects of diet discontinuation and dietary tryptophan supplementation on neurotransmitter metabolism in PKU. Brain Dysfunction 1: 51 – 56Google Scholar
  18. 18.
    Pratt OE (1982) Transport inhibition in the pathology of phenylketonuria and other inherited metabolic diseases. J Inherited Metab Dis 2: 75 – 81CrossRefGoogle Scholar
  19. 19.
    Kaufman S (1981) Regulatory properties of pterin-dependent hydroxylase: variations on a theme. In: Usdin E, Weiner N, Youdim MBH (eds) Function and regulation of monoamine enzymes. MacMillan, New York, pp 165 – 173Google Scholar
  20. 20.
    Peterson NA, Shah SN, Raghupathy E, Riioads R (1983) Presynaptic tyrosine availability in the phenylketonuric brain: a hypothetical evaluation. Brain Res 272: 189 – 193PubMedCrossRefGoogle Scholar
  21. 21.
    Green AR (1978) The effects of dietary tryptophan and its peripheral metabolism on brain 5-hydroxytryptamine synthesis and function. In: Youdim MBH, Lovenberg W, Sharman DF, Lagrado JR (eds). Essays in neurochemistry and neuropharmacology. Wiley, Chichester, pp 103 – 127Google Scholar
  22. 22.
    Krause W, Halminski M, McDonald L, Dembure P, Salvo R, Freides D, Elsas L (1985) Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria. J Clin Invest 75: 40 – 48PubMedCrossRefGoogle Scholar
  23. 23.
    Lou HC, Lykkelund C, Gerdes AM, Udesen H, Bruhn P (1987) Increased vigilance and dopamine synthesis by large doses of tyrosine or phenylalanine restriction in phenylketonuria. Acta Paediatr Scand 76: 560 – 565PubMedCrossRefGoogle Scholar
  24. 24.
    McKean CM (1971) Effect of totally synthetic low phenylalanine diet on adolescent phenylketonuric patients. Arch Dis Child 46: 606 – 615CrossRefGoogle Scholar
  25. 25.
    Marholin D, Pohl RE, Stewart RM, Touchette PE, Townsend NM, Kolodney EH (1978) Effects of diet and behaviour therapy on social and motor behaviour of retarded phenylketonuric adults. An experimental analysis. Pediatr Res 12: 179–187Google Scholar
  26. 26.
    Smith I, Lobascher ME, Stevenson JE, Wolff OH, Schmidt H, Grubel-Kaiser S, Bickel H (1978) Effect of stopping low-phenylalanine diet on intellectual progress of children with phenylketonuria. Br Med J 2: 723 – 726PubMedCrossRefGoogle Scholar
  27. 27.
    Koch R, Azen C, Friedman EG, Williamson ML (1984) Paired comparisons between early treated PKU children and their matched sibling controls on intelligence and school achievement test results at eight years of age. J Inherited Metab Dis 7: 86 – 90PubMedCrossRefGoogle Scholar
  28. 28.
    Michals K, Azen C, Acosta P, Koch R, Matalon R (1988) Blood phenylalanine levels and intelligence of 10-year-old children with PKU in the national collaborative study. J Am Diet Assoc 88: 1226 – 1229PubMedGoogle Scholar
  29. 29.
    Naughten ER, Kiely B, Saul 1, Murphy D (1987) Phenylketonuria: outcome and problems in a diet-for-life clinic. Eur J Pediatr 146 [Suppl 1]: 23 – 24CrossRefGoogle Scholar
  30. 30.
    Pietz J, Benninger C, Schmidt H, Scheffner D, Bickel H (1988) Long-term development of intelligence (IQ) and EEG in 34 children with phenylketonuria treated early. Eur J Pediatr 147: 361 – 367PubMedCrossRefGoogle Scholar
  31. 31.
    Schmidt H, Mahle M, Michel U, Pietz J (1987) Continuation vs discontinuation of lowphenylalanine diet in PKU adolescents. Eur J Pediatr 146 [Suppl 1]: 17 – 19CrossRefGoogle Scholar
  32. 32.
    Smith I (1987) Phenylketonuria. In: Hosking G, Murphy G (eds) Smith I, pp 59 - 61 ( Royal Society of Medicine International Congress and Symposium Series )Google Scholar
  33. 33.
    Waisbren SE, Mahon BE, Schnell RR, Levy HL (1987) Predictors of intelligence quotient and intelligence quotient change in persons treated for phenylketonuria early in life. Pediatrics 79: 351 – 355PubMedGoogle Scholar
  34. 34.
    Holtzman NA, Kronmal RA, van Doorninck W, Azen C, Koch R (1986) Effect of age at loss of dietary control on intellectual performance and behavior of children with phenylketonuria. N Engl J Med 314: 593 – 598PubMedCrossRefGoogle Scholar
  35. 35.
    Smith 1, Beasley MG, Wolff OH, Ades AE (1988) Behavior disturbance in 8-year-old children with early treated phenylketonuria. J Pediatr 112: 403 – 408CrossRefGoogle Scholar
  36. 36.
    Krause W, Epstein C, Averbook A, Dembure P, Elsas L (1986) Phenylalanine alters the mean power frequency of electroencephalograms and plasma L-dopa in treated patients with phenylketonuria. Pediatr Res 20: 1112 – 1116PubMedCrossRefGoogle Scholar
  37. 37.
    Koch R, Azen CG, Hurst N, Friedman EG, Fishier K (1987) The effects of diet discontinuation in children with phenylketonuria. Eur J Pediatr 146 [Suppl 1]: 12 – 16CrossRefGoogle Scholar
  38. 38.
    Scriver CR, Rosenberg LE (1973) Amino acid metabolism and its disorders. Saunders, PhiladelphiaGoogle Scholar
  39. 39.
    Yu JS, Stuckey SJ, O’Halloran MT (1970) Atypical phenylketonuria. An approach to diagnosis and management. Arch Dis Child 45: 561–565Google Scholar
  40. 40.
    Bickel H, Grüter W (1957) Phenylketonurie mit normalen Intelligenzquotienten. Z Kinderheilkunde 79: 509 – 521CrossRefGoogle Scholar
  41. 41.
    Güttler F, Wamberg E (1977) Fasting serum phenylalanine in untreated institutionalised patients with phenylketonuria. J Ment Defic Res 21: 55 – 62PubMedGoogle Scholar
  42. 42.
    Güttler F (1980) Hyperphenylalaninemia: diagnosis and classification of the various types of phenylalanine hydroxylase deficiency in childhood. Acta Paediatr Scand [Suppl 280]: 1 - 80Google Scholar
  43. 43.
    Bickel H, Gerrard J, Hickmans EM (1954) The influence of phenylalanine intake on the chemistry and behavior of a phenylketonuria child. Acta Paediatr Scand 43: 64 – 77CrossRefGoogle Scholar
  44. 44.
    Guthrie R, Susi A (1963) A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics 32: 338 – 343PubMedGoogle Scholar
  45. 45.
    Berry HK, Porter LJ (1982) Newborn screening for phenylketonuria. Pediatrics 70: 505 – 506PubMedGoogle Scholar
  46. 46.
    Meryash DL, Levy HL, Guthrie R, Warner R, Bloom S, Carr JR (1981) Prospective study of early neonatal screening for phenylketonuria. N Engl J of Med 304: 294 – 296CrossRefGoogle Scholar
  47. 47.
    McCabe ERB, McCabe L, Mosher GA, Allan FU, Berman JL (1983) Newborn screening for phenylketonuria: predictive validity as a function of age. Pediatrics 72: 390 – 398PubMedGoogle Scholar
  48. 48.
    Lenke RR, Levy HH (1980) Maternal phenylketonuria and hyperphenylalaninemia: an international survey of the outcome of untreated and treated pregnancies. N Engl J Med 303: 1202 – 1208PubMedCrossRefGoogle Scholar
  49. 49.
    Dobson IC, Williamson ML, Azen C, Koch R (1977) Intellectual assessment of 111 fouryear-old children with phenylketonuria. Pediatrics 60: 822 – 827PubMedGoogle Scholar
  50. 50.
    Lie SO, Motzfeldt K (1982) Breast feeding of infants with phenylketonuria (PKU) (Abstract). In: Crawford Md’A, Gibbs DA, Watts RWE (eds) Advances in the treatment of inborn errors of metabolism. Wiley, Chichester 318Google Scholar
  51. 51.
    Penrose LS (1935) Inheritance of phenylpyruvic amentia (phenylketonuria). Lancet 2: 192 – 194CrossRefGoogle Scholar
  52. 52.
    Danks DM, Bartholomé K, Clayton BE (1978) Malignant hyperphenylalaninaemia - current status. J Inherited Metab Dis 1: 49 – 53PubMedCrossRefGoogle Scholar
  53. 53.
    Lidsky AS, Law ML, Morse HG, Kao FT, Raben M, Ruddle FH, Woo SLC (1985) Regional mapping of the human phenylalanine hydroxylase gene and the PKU locus on chromosome 12. Proc Natl Acad Sci USA 82: 6221 – 6225PubMedCrossRefGoogle Scholar
  54. 54.
    Woo SCL, Lidsky AS, Güttler F, Chandra T, Robson KJH (1983) Cloned human phenyl-alanine hydroxylase gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 306: 151 – 155PubMedCrossRefGoogle Scholar
  55. 55.
    Lidsky AS, Ledley FD, DiLella AG, Kwok SCM, Daiger SP, Robson KJH, Woo SLC (1985) Extensive restriction site polymorphism at the human phenylalanine hydroxylase locus and application in prenatal diagnosis of phenylketonuria. Am J Hum Genet 37: 619 – 634PubMedGoogle Scholar
  56. 56.
    Güttler F, DiLella AG, Ledley FD, Lidsky AS, Kwok SCM, Marvit J, Woo SLC (1987) Molecular biology of phenylketonuria. Eur J Pediatr 146: 5 – 11CrossRefGoogle Scholar
  57. 57.
    Aulehla-Scholz C, Vorgerd M, Sautter E, Leupold D, Mahlmann R, Ullrich K, Olek K, Horst J (1988) Phenylketonuria: distribution of DNA diagnostic patterns in German families. Hum Genet 78: 353 – 355PubMedCrossRefGoogle Scholar
  58. 58.
    Hermann FH, Wulff K, Wehnert M, Seidlitz G, Güttler F (1988) Haplotype analysis of classical and mild phenotype of phenylketonuria in the German Democratic Republic. Clin Genet 34: 176 – 180CrossRefGoogle Scholar
  59. 59.
    Lichter-Konecki U, Schiotter M, Konecki DS, Labeit S, Woo SLC, Trefz FK (1988) Linkage disequilibrium between mutation and RFLP haplotype at the phenylalanine hydroxylase locus in the German population. Hum Genet 78: 347 – 352PubMedCrossRefGoogle Scholar
  60. 60.
    Riess O, Michel A, Speer A, Meiske W, Cobet G, Coutelle C (1988) Linkage disequilibrium between RFLP haplotype and the affected PAH allele in PKU families from the Berlin area of the German Democratic Republic. Hum Genet 78: 343 – 346PubMedCrossRefGoogle Scholar
  61. 61.
    Güttler F, Ledley FD, Lidsky AS, DiLella AG, Sullivan SE, Woo SLC (1987) Correlation between polymorphic DNA haplotypes at the phenylalanine hydroxylase locus and clinical phenotypes of phenylketonuria. J Pediatr 110: 68 – 71PubMedCrossRefGoogle Scholar
  62. 62.
    DiLella AG, Marvit J, Lidsky AS, Güttler F, Woo SLC (1986) Tight linkage between a splicing mutation and a specific DNA haplotype in phenylketonuria. Nature 322: 799 – 803PubMedCrossRefGoogle Scholar
  63. 63.
    Woo SLC, DiLella AG, Marvit J, Ledley FD (1987) Molecular basis of phenylketonuria and recombinant DNA strategies for its therapy. Enzyme 38: 207 – 213PubMedGoogle Scholar
  64. 64.
    Rey F, Berthelon M, Caillaud C, Lyonnet S, Abadie V, Blandin-Savoja F, Feingold J, Saudubray JM, Frézal J, Munnich A, Rey J (1988) Clinical and molecular heterogeneity of phenylalanine hydroxylase deficiencies in France. Am J Hum Genet 43: 914 – 921PubMedGoogle Scholar
  65. 65.
    Dianzani I, Farinasso L, Fortina P, Camaschella C, Ponzone R, Dahl HHM, Cotton RGH, Ponzone A (1988) RFLPs of the phenylalanine hydroxylase (PAH) gene in the Italian population: abstracts of the 26th SSIEM annual symposium, 6–9 September 1988, Glasgow, p 34Google Scholar
  66. 66.
    DiLella AG, Huang WM, Woo SLC (1988) Screening for phenylketonuria mutations by DNA amplification with the polymerase chain reaction. Lancet 1: 497 – 499PubMedCrossRefGoogle Scholar
  67. 67.
    Lyonnet S, Caillaud C, Rey F, Berthelon M, Frezal J, Rey J, Munnich A (1988) Guthrie cards for detection of point mutations in phenylketonuria. Lancet 2: 507PubMedCrossRefGoogle Scholar
  68. 68.
    Ledley FD, Grenett HE, DiLella AG, Kwok SCM, Woo SLC (1985) Gene transfer and expression of human phenylalanine hydroxylase. Science 228: 77 – 79PubMedCrossRefGoogle Scholar
  69. 69.
    Ledley FD, Grenett HE, McGinnis-Shelnutt M, Woo SLC (1986) Retroviral-mediated gene transfer of human phenylalanine hydroxylase into NIH 3T3 and hepatoma cells. Proc Natl Acad Sci USA 83: 409 – 413PubMedCrossRefGoogle Scholar
  70. 70.
    Ledley FD, Darlington GJ, Hahn T, Woo SLC (1987) Retroviral gene transfer into primary hepatocytes: Implications for genetic therapy of liver-specific functions. Proc Natl Acad Sci USA 84: 5335–5339Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • F. Güttler
  • H. Lou

There are no affiliations available

Personalised recommendations