Movement Detection and Figure-Ground Discrimination

  • W. Reichardt
Conference paper


Movement detectors of the so-called correlation type were proposed long ago to explain motion perception in insects (Hassenstein and Reichardt 1956; Reichardt 1957, 1961; Reichardt and Varju 1959; Varjú 1959). In the meantime, good evidence has been accumulated that this movement detection scheme can also be applied to motion detection in humans (e.g. van Doom et al. 1982a,b; van Santen et al. 1984, 1985; Wilson 1985; Baker and Braddick 1985). More recently our interest in movement computation has focused on dynamic aspects and on the dependence of the detector output on the structure of the stimulus pattern. In addition, the properties of two-dimensional arrays of pairs of movement detectors (Reichardt and Guo 1986; Egelhaaf and Reichardt 1987; Reichardt 1987) have been investigated in detail. Individual movement detectors, however, do not provide meaningful information on a moving pattern. In addition, some spatial, physiological integration is needed, for instance in connection with a solution of the figure and ground discrimination problem (Reichardt and Poggio 1979; Reichardt 1979, 1980; Poggio et al. 1981; Reichardt et al. 1983; Egelhaaf 1985).


Movement Detector Horizontal Cell Lobula Plate Horizontal System Brightness Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker LB, Braddick OJ (1985) Temporal properties of the short-range process in apparent motion. Perception 14: 181–192PubMedCrossRefGoogle Scholar
  2. Collett TS, King Al (1974) Vision during flight. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 437–466Google Scholar
  3. Courant R, Hilbert D (1962) Methods of mathematical physics, vol II. Interscience, New YorkGoogle Scholar
  4. Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52: 123–140CrossRefGoogle Scholar
  5. Egelhaaf (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol [A] 161: 777–783CrossRefGoogle Scholar
  6. Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56: 69–87CrossRefGoogle Scholar
  7. Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. TINS 11: 351–358PubMedGoogle Scholar
  8. Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlomphanus. Z Naturforsch llb: 513–524Google Scholar
  9. Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45: 143–156CrossRefGoogle Scholar
  10. Hausen K (1982b) Motion sensitive intemeurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46: 67–79CrossRefGoogle Scholar
  11. Hausen K (1984) Large-field motion computations: the neural basis of visual stabilization in the flying fly. Proc Int Soc Eye Res 3: 28Google Scholar
  12. Heide G (1983) Neural mechanisms of flight control in diptera. In: Nachtigall W (ed) Biona report. Alcade-mie der Wissenschaften und der Literatur zu Mainz. Fischer, Stuttgart, pp 35–52Google Scholar
  13. Heisenberg M, Wolf R (eds) (1984) Vision in Drosophila. Genetics of microbehavior. In: Studies of brain functions, vol 12. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Laughlin SB (1984) The rotes of parallel channels in early visual processing by the arthopod compound eye. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 457–481CrossRefGoogle Scholar
  15. Poggio T, Reichardt W, Hausen K (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften 68: 443–446CrossRefGoogle Scholar
  16. Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z Naturforsch 12b: 448–457Google Scholar
  17. Reichardt W (1961) Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. Wiley, New York, pp 303–317Google Scholar
  18. Reichardt W (1979) Figure-ground discrimination by the visual system of the fly. In: Haken H (ed) Pattern formation by dynamic systems and pattern recognition. Springer, Berlin Heidelberg New York, pp 100–121CrossRefGoogle Scholar
  19. Reichardt W (1980) Analogy between hologram formation and computation of relative movement by the visual system of the fly. Naturwissenschaften 67: 411PubMedCrossRefGoogle Scholar
  20. Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol 161: 533–547CrossRefGoogle Scholar
  21. Reichardt W, Egelhaaf M (1988) Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly. Biol Cybern 58: 287–294CrossRefGoogle Scholar
  22. Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioural experiments with the fly Musca domestica). Biol Cybern 53: 285–306CrossRefGoogle Scholar
  23. Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Q Rev Biophys 9: 311–375PubMedCrossRefGoogle Scholar
  24. Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol Cybern 35: 81–100Google Scholar
  25. Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungsehen. Z Naturforsch 14b: 674–689Google Scholar
  26. Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry. Biol Cybern [Suppl] 46: 1–30Google Scholar
  27. Reichardt W, Schlögl RW, Egelhaaf M (1988) Movement detectors provide sufficient informaiton for local computation of 2-D velocity field. Naturwissenschaften 75: 313–316PubMedCrossRefGoogle Scholar
  28. Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  29. Strausfeld NJ, Bassemir U, Singh RM, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30: 73–93CrossRefGoogle Scholar
  30. van Doom AJ, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188Google Scholar
  31. van Doom Al, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving white noise. Exp Brain Res 45: 189–195Google Scholar
  32. van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am [A] 1: 451–473CrossRefGoogle Scholar
  33. van Santen JPH, Sperling G (1985) Elaborated Reichardt Detectors. J Opt Soc Am [A] 2: 300–321CrossRefGoogle Scholar
  34. Varjti D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster (Anwendung der Systemtheorie auf Experimente am Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b: 724–735Google Scholar
  35. Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets. Philos Trans R Soc Lond [Biol] 312: 553–579CrossRefGoogle Scholar
  36. Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) III. Interacions between angular movement induced by wide-and smallfield stimuli. Philos Trans R Soc Lond [Biol] 312: 581–595CrossRefGoogle Scholar
  37. Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38: 179–186CrossRefGoogle Scholar
  38. Wehrhahn C, Poggio T, Büithoff H (1982) Tracking and chasing in houseflies (Musca). An analysis of 3-D flight trajectories. Biol Cybern 45: 123–130CrossRefGoogle Scholar
  39. Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybern 51: 213–222PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • W. Reichardt
    • 1
  1. 1.Max-Planck-Institut für biologische KybernetikTübingenGermany

Personalised recommendations