Looking Where the Action Is: Negative DC Shifts as Indicators of Cortical Activity

  • L. Deecke
  • W. Lang
  • F. Uhl
  • I. Podreka


Several means are now available for looking where the action is in the brain. One of these is the negative potential shift of cerebral cortex, which indicates activity is underway. Today we can also map the metabolic changes in the brain and the regional cerebral blood flow. The latter is possible using single photon emission computerized tomography (SPECT) and a new tracer substance, 99mTc-hexa-methyl-propylene-amineoxime (HMPAO, Podreka et. al. 1987). This compound is trapped in metabolically active cells similar to 2-deoxyglucose. Finally, the magnetic fields in the brain can be recorded and mapped (magnetoencephalogram, MEG). Let us start with the latter.


Single Photon Emission Computerize Tomo Field Line Left Hemisphere Supplementary Motor Area Verbal Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Caspers H, Speckmann El (1969) DC Potential shift in paroxysmal states. In: Jasper HH et al. (eds): Basic mechanisms of the epilepsies. Little, Brown, Boston, pp 375–388Google Scholar
  2. Cheyne DO (1988) Magnetic and electric field measurements of brain activity preceding voluntary movements: Implications for supplementary motor area function. PhD thesis, Psychology Department, Simon Fraser University, VancouverGoogle Scholar
  3. Deecke L, Kornhuber HH (1978) An electrical sign of participation of the mesial “supplementary” rhotor cortex in human voluntary finger movements. Brain Res 159: 473–476PubMedCrossRefGoogle Scholar
  4. Deecke L, Weinberg H, Brickett P (1982) Magnetic fields of the human brain accompanying voluntary movement. Bereitschaftsmagnetfeld. Exp Brain Res 48: 144–148Google Scholar
  5. Deecke L, Boschert J, Weinberg H, Brickett P (1985) Magnetic fields of the human brain ( Bereitschaftsmagnetfeld) preceding voluntary foot and toe movements. Exp Brain Res 52: 81–86Google Scholar
  6. Deecke L, Boschert J, Brickett P, Weinberg H (1985) Magnetoencephalographic evidence for possible supplementary motor area participation in human voluntary movement. In: Weinberg H, Stroink G, Katila T (eds): Biomagnetism: applications and theory. Pergamon, New York pp 369–372Google Scholar
  7. Deecke L, Engel M, Lang W, Kornhuber HH (1986) Bereitschaftspotential preceding speech after holding breath. Exp Brain Res 65: 219–223PubMedCrossRefGoogle Scholar
  8. Deecke L, Uhl F, Spieth F, Lang W, Lang M (1987) Cerebral potentials preceding and accompanying verbal and spatial tasks. In: Johnson R Jr, Rohrbaugh JW, Parasuraman R (eds) Current trends in event-related potential research. Electroenceph. Clin. Neurophysiol [Suppl] 40: 17–23Google Scholar
  9. Geschwind N, Galaburda A (eds) (1984) Cerebral dominance: the biological foundations. Harvard University Press, CambridgeGoogle Scholar
  10. Griizinger B, Kornhuber HH, Kriebel J, Szirtes J, Westphal (1980) The Bereitschaftspotential preceding the act of speaking. Also an analysis of artifacts. In: Kornhuber HH, Deecke L (eds) Motivation, motor and sensory processes of the brain. Electrical potentials, behaviour and clinical use. Prog. Brain Res 54: 798–80Google Scholar
  11. Hari R, Antervo A, Katila T, Poutanen T, Seppanen M, Tuomisto T, Varpula T(1983) Cerebral magnetic fields associated with voluntary limb movements. Il Nuovo Cimento 2 D: 484–494Google Scholar
  12. Kornhuber HH, Deecke L (1964) Hirnpotentialânderungen beim Menschen vor and nach Willkürbewegungen, dargestellt mit Magnetbandspeicherung and Rückwârtsanalyse. Pflügers Arch. 281: 52Google Scholar
  13. Kornhuber HH, Deecke L (1965): Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegun- gen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch. 284: 1–17Google Scholar
  14. Lang W, Lang M, Podreka I, Steiner M, Uhl F, Suess E, Müller C, Deecke L (1988) DC-potential shifts and regional cerebral blood flow reveal frontal cortex involvement in human visuomotor learning. Exp. Brain Res 71: 353–364Google Scholar
  15. Lassen NA, Ingvar DH, Skinhoj E (1978) Brain function and blood flow. Sci.Am. 239: 62–71PubMedCrossRefGoogle Scholar
  16. Penfield W, Rasmussen T (1950) The cerebral cortex of man. Macmillan, New York (1950).Google Scholar
  17. Podreka I, Suess E, Goldenberg G, Steiner M, Brücke T, Müller C, Lang W, Neirinckx RD, Deecke L (1987) Initial experience with technetium-99m-HMPAO brain SPELT. J. Nucl. Med. 28: 1657–1666Google Scholar
  18. Schreiber H, Lang M, Lang W, Kornhuber A, Heise B, Keidel M, Deecke L, Kornhuber HH (1983): Frontal hemispheric differences of the Bereitschaftspotential associated with writing and drawing. Hum Neurobiol. 2: 197–202PubMedGoogle Scholar
  19. Uhl F, Lang W, Lang M, Kornhuber A, Deecke L (1988) Cortical slow potentials in verbal and spatial tasks–The effect of material, visual hemifield and performing hand. Neuropsychologia 26: 769–775PubMedCrossRefGoogle Scholar
  20. Weinberg H, Brickett P, Deecke L, Boschert J (1983) Slow magnetic fields of the brain preceding movements and speech. Il Nuovo Cimento 2: 495–504CrossRefGoogle Scholar
  21. Wernicke C (1874) Der aphasische Symptomencomplex. Max Cohn and Weigert, BreslauGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • L. Deecke
    • 1
  • W. Lang
    • 1
  • F. Uhl
    • 1
  • I. Podreka
    • 1
  1. 1.Neurologische Universitätsklinik WienViennaAustria

Personalised recommendations