Parallel and Complementary Organization of Cortical Eye Movement Control and Visual Perception

  • O. D. Creutzfeldt
Conference paper


In visual physiology we are faced with two complementary aspects and problems. One is concerned essentially with the anatomical and physiological representation of the retina and of visual stimuli in the brain, and the other with the involvement of various brain areas in eye movement control. The first aspect has dominated visual physiology during the last 25-30 years, leading to a model in which the visual world is layed out across the brain as on maps in which either the spatial dimensions of visual stimuli or specific aspects or features of the visual information are faithfully and orderly represented (Creutzfeldt 1983, 1985). Without going into the details of this model at this point, the question arises how this distributed information is recombined into a single and meaningful concept of the visual world. Is meaning in fact represented in feature maps of highest order and abstraction?


Superior Colliculus Binocular Fusion Pursuit Neuron Parietal Association Cortex Visual Physiology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersen RA (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Mountcastle VB, Plum F, Geiger SR (eds) The nervous system. American Physiological Society, Maryland, pp 483–518 (Handbook of Physiology, vol 5 )Google Scholar
  2. Balint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25: 25–81Google Scholar
  3. Bender MB (1980) Brain control of conjugate horizontal and vertical eye movements. A survey of the structural and functional correlates. Brain 103: 23–69PubMedCrossRefGoogle Scholar
  4. Bianchi L (1895) The functions of the frontal lobes. Brain 18: 497–530CrossRefGoogle Scholar
  5. Bizzi E (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp Brain Res 6: 69–80PubMedCrossRefGoogle Scholar
  6. Bruce CJ, Goldberg ME (1984) Physiology of the frontal eye fields. TINS 7: 436–441Google Scholar
  7. Bruce Cl, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53: 603–635Google Scholar
  8. Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective attention. J Neurophysiol 46: 755–772Google Scholar
  9. Cogan DG (1965) Ophthalmic manifestations of bilateral non-occipital cerebral lesions. Br J Opthalmol 49: 281–297CrossRefGoogle Scholar
  10. Creutzfeldt OD (1983) Cortex Cerebri. Leistung, strukturelle and funktionelle Organisation der Hirnrinde. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Creutzfeldt OD (1985) Comparative aspects of representation in the visual system. Exp Brain Res [Suppl] 11: 53–81Google Scholar
  12. Creutzfeldt OD (1988) Cortical mechanisms of eye movements in relation to perception and cognitive processes. In: Liier G, Lass U, Shallo-Hoffmann J (eds) Eye movement research. Physiological and psychological aspects. Hogrefe, Toronto, pp 9–33Google Scholar
  13. Creutzfeldt OD, Nothdurft HC (1978) Representation of complex visual stimuli in the brain. Naturwissenschaften 65, 307–318PubMedCrossRefGoogle Scholar
  14. Fischer B (1986) Express saccades in man and monkey. Prog Brain Res 64: 155–174PubMedCrossRefGoogle Scholar
  15. Fischer B (1987) The preparation of visually guided saccades. Baker PF et al. (eds) Reviews of physiology, biochemistry and pharmacology, vol 106. Springer, Berlin Heidelberg New YorkGoogle Scholar
  16. Fischer B, Boch R (1981a) Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp Brain Res 44: 129–137PubMedCrossRefGoogle Scholar
  17. Fischer B, Boch R (1981b) Selection of visual targets activates prelunate cortical cells in trained rhesus monkeys. Exp Brain Res 41: 431–433PubMedCrossRefGoogle Scholar
  18. Fischer B, Boch R (1985) Peripheral attention versus central fixation: modulation of the visual activity of prelunate cortical cells of the rhesus mokey. Brain Res 345: 111–123PubMedCrossRefGoogle Scholar
  19. Foerster 0 (1936) Motorische Felder and Bahnen. In: Bumke O, Foerster O (eds) Handbuch der Neurologic, vol 6. Springer, Berlin Heidelberg New York, pp 1–357Google Scholar
  20. Goldberg ME, Bruce CJ (1985) Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Res 25: 471–481Google Scholar
  21. Goldberg ME, Bruce CI (1986) The role of arcuate frontal eye fields in the generation of saccadic eye movements. Prog Brain Res 64: 143–154PubMedCrossRefGoogle Scholar
  22. Goldberg ME, Bushnell MC (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J Neurophysiol. 46: 773–787 Goldberg ME, Bushnell MC, Bruce CJ (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp Brain Res 61: 579–584Google Scholar
  23. Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58: 455. 472Google Scholar
  24. Haenny PE, Schiller PH (1988) State dependent activity in the monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res 69: 225–244PubMedCrossRefGoogle Scholar
  25. Heilman KM, Valenstein E, Goldberg ME (1987) Attention: behavior and neural mechanisms. In: Mount-castle VB, Plum F, Geiger SR (eds) The Nervous System, American Physiological Society, Maryland, pp 461–481(Handbook of physiology, vol 5 )Google Scholar
  26. Henn V, Biittner-Ennever JA, Hepp K (1982) The primate oculomotor system. A synthesis of anatomical, physiological and clinical data. Human Neurobiol 1: 77–95Google Scholar
  27. Heywood CA, Cowey A (1987) On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J Neurosci, 7: 174–218Google Scholar
  28. Holmes G (1919) Disturbances of visual space perception. Br Med J 2: 230–233PubMedCrossRefGoogle Scholar
  29. Holmes G, Horrax G (1919) Disturbances of spatial orientation and visual attention, with loss of stereoscopic visison. Arch Psychiatr 1: 385–407Google Scholar
  30. Hyvärinen J (1982) The parietal cortex of monkey and man. Springer, Berlin Heidelberg New York, 202 pp Jackson H (1932) Selected writings, vol II. J Taylor (ed). Hodder and Stoughton, LondonGoogle Scholar
  31. Julesz B (1985) Preconscious and conscious processes in vision. Exp Brain Res [Suppl] 11: 333–359Google Scholar
  32. Jung R (1974) Neuropsychologie and Neurophysiologie des Kontur-and Formsehens in Zeichnung and Malerei. In: Wieck HH (ed) Psychopathologie musischer Gestaltungen. Schattauer, Stuttgart, pp 29–88Google Scholar
  33. Keating EG, Gooley SG, Pratt SE, Kelsey JE (1983) Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields. Brain Res 269: 145–148PubMedCrossRefGoogle Scholar
  34. Latto R (1978) The effects of bilateral frontal eye field, posterior parietal or superior collicular lesions on visual search in the rhesus monkey. Brain Res 146: 35–50PubMedCrossRefGoogle Scholar
  35. Latto R, Cowey A (1971) Visual field defect after frontal eye-field lesions in monkeys. Brain Res. 30: 1–24 Lynch JC (1980) The role of parieto-occipital association cortex in oculomotor control. Exp Brain Res 41: A32Google Scholar
  36. Lynch JC (1987) Frontal eye field lesions in monkeys disrupt visual pursuit. Exp Brain Res 68: 437–441PubMedCrossRefGoogle Scholar
  37. Lynch JC, McLaren JW (1979) Effects of lesions of parieto-occipital association cortex upon performance of oculomotor and attention tasks in monkeys. Neurosci Abstr 5: 794Google Scholar
  38. Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40: 362–389PubMedGoogle Scholar
  39. Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7: 1010–1021PubMedGoogle Scholar
  40. Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229: 782–784PubMedCrossRefGoogle Scholar
  41. Mountcastle VB (1976) The world around us. Neural command functions for selective attention. Neurosci Res Prog Bull 14, [Suppl]Google Scholar
  42. Mountcastle VB (1981) Functional properties of the light sensitive neurons of the posterior parietal cortex and their regulation by state controls: influence on excitability of interested fixation and the angle of gaze. In: Pompeiano O, Ajmone Marsan C (eds) Brain mechanisms of perceptual awareness and purposeful behavior. Raven, New York, pp 67–69 (IBRO monograph series, vol. 8 )Google Scholar
  43. Pöppel E, R Held and D Frost (1973) Residual visual functions after brain wounds involving the central visual pathway in man. Nature 243: 295–296PubMedCrossRefGoogle Scholar
  44. Posner MI, JA Walker, FJ Friedrich and RD Rafal (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 7: 1863–1874Google Scholar
  45. Robinson DA (1981) Control of eye movements. In: Brookhart JM, Mountcastle VB (eds) Motor control, part 2. American Physiological Society, Bethesda, pp 1275–1320 (Handbook of physiology, vol 2) Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32: 637–648Google Scholar
  46. Robinson DA, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. J Neurophysiol 41: 910–932Google Scholar
  47. Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179: 162–164PubMedCrossRefGoogle Scholar
  48. Schiller PH, Sandell JH, Maunsell JHR (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol 57: 1033PubMedGoogle Scholar
  49. Schlag J, Schlag-Rey M (1985a) Unit activity-related to spontaneous saccades in frontal dorsomedial cortex of monkey. Exp Brain Res 58: 208–211PubMedCrossRefGoogle Scholar
  50. Schlag J, Schlag-Rey M (1985b) Eye fixation units in the supplementary eye field of monkey. Neurosci Abstr 25: 23–82Google Scholar
  51. Schlag J, Schlag-Rey M(1987a) Evidence for a supplementary eye field. J Neurosci 57: 179Google Scholar
  52. Schlag J, Schlag-Rey M (1987b) Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp Brain Res 68: 442–444PubMedCrossRefGoogle Scholar
  53. Stein J (1978) The effect of parietal lobe cooling on manipulative behavior in the conscious monkey. In: Gordon G (ed) Active touch. Pergamon, Oxford, pp 79–90Google Scholar
  54. Tanaka M, Weber H, Creutzfeldt OD (1986) Visual properties and spatial distribution of neurons in the vi- sual association area on the prelunate gyrus of the awake monkey. Exp Brain Res 63: 11–37Google Scholar
  55. Vogt C, Vogt 0 (1919) Allgemeinere Ergebnisse unserer Hirnforschung. IV. Die physiologische Bedeutung der architektonischen Rindenfelderung aufgrund unserer Rindenreizungen. J Psychol Neural 25: 401–461Google Scholar
  56. Wagmann IH (1964) Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: Bender MB (ed) The oculomotor system. Hoeber, New York. pp 1839Google Scholar
  57. Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97: 709–728PubMedCrossRefGoogle Scholar
  58. Wise SP, Strick PL (1984) Anatomical and physiological organization of the non-primary motor cortex. TINS 7: 442ffGoogle Scholar
  59. Wurtz RH, Goldberg ME, Robinson DL (1982) Brain mechanisms of visual attention. In: Thompson RF (ed) Progress in neuroscience, pp 82–90 (readings from Scientific American)Google Scholar
  60. Yarbus AL (1967) Eye movements and vision. Plenum, New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • O. D. Creutzfeldt
    • 1
  1. 1.Dept. of NeurobiologyMax-Planck-Institute for Biophysical ChemistryGöttingen-NikolausbergGermany

Personalised recommendations