Skip to main content

Parallel and Complementary Organization of Cortical Eye Movement Control and Visual Perception

  • Conference paper
From Neuron to Action
  • 117 Accesses

Abstract

In visual physiology we are faced with two complementary aspects and problems. One is concerned essentially with the anatomical and physiological representation of the retina and of visual stimuli in the brain, and the other with the involvement of various brain areas in eye movement control. The first aspect has dominated visual physiology during the last 25-30 years, leading to a model in which the visual world is layed out across the brain as on maps in which either the spatial dimensions of visual stimuli or specific aspects or features of the visual information are faithfully and orderly represented (Creutzfeldt 1983, 1985). Without going into the details of this model at this point, the question arises how this distributed information is recombined into a single and meaningful concept of the visual world. Is meaning in fact represented in feature maps of highest order and abstraction?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen RA (1987) Inferior parietal lobule function in spatial perception and visuomotor integration. In: Mountcastle VB, Plum F, Geiger SR (eds) The nervous system. American Physiological Society, Maryland, pp 483–518 (Handbook of Physiology, vol 5 )

    Google Scholar 

  • Balint R (1909) Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. Monatsschr Psychiatr Neurol 25: 25–81

    Google Scholar 

  • Bender MB (1980) Brain control of conjugate horizontal and vertical eye movements. A survey of the structural and functional correlates. Brain 103: 23–69

    Article  PubMed  CAS  Google Scholar 

  • Bianchi L (1895) The functions of the frontal lobes. Brain 18: 497–530

    Article  Google Scholar 

  • Bizzi E (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp Brain Res 6: 69–80

    Article  PubMed  CAS  Google Scholar 

  • Bruce CJ, Goldberg ME (1984) Physiology of the frontal eye fields. TINS 7: 436–441

    Google Scholar 

  • Bruce Cl, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53: 603–635

    Google Scholar 

  • Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective attention. J Neurophysiol 46: 755–772

    Google Scholar 

  • Cogan DG (1965) Ophthalmic manifestations of bilateral non-occipital cerebral lesions. Br J Opthalmol 49: 281–297

    Article  CAS  Google Scholar 

  • Creutzfeldt OD (1983) Cortex Cerebri. Leistung, strukturelle and funktionelle Organisation der Hirnrinde. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Creutzfeldt OD (1985) Comparative aspects of representation in the visual system. Exp Brain Res [Suppl] 11: 53–81

    Google Scholar 

  • Creutzfeldt OD (1988) Cortical mechanisms of eye movements in relation to perception and cognitive processes. In: Liier G, Lass U, Shallo-Hoffmann J (eds) Eye movement research. Physiological and psychological aspects. Hogrefe, Toronto, pp 9–33

    Google Scholar 

  • Creutzfeldt OD, Nothdurft HC (1978) Representation of complex visual stimuli in the brain. Naturwissenschaften 65, 307–318

    Article  PubMed  CAS  Google Scholar 

  • Fischer B (1986) Express saccades in man and monkey. Prog Brain Res 64: 155–174

    Article  PubMed  CAS  Google Scholar 

  • Fischer B (1987) The preparation of visually guided saccades. Baker PF et al. (eds) Reviews of physiology, biochemistry and pharmacology, vol 106. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fischer B, Boch R (1981a) Enhanced activation of neurons in prelunate cortex before visually guided saccades of trained rhesus monkeys. Exp Brain Res 44: 129–137

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Boch R (1981b) Selection of visual targets activates prelunate cortical cells in trained rhesus monkeys. Exp Brain Res 41: 431–433

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, Boch R (1985) Peripheral attention versus central fixation: modulation of the visual activity of prelunate cortical cells of the rhesus mokey. Brain Res 345: 111–123

    Article  PubMed  CAS  Google Scholar 

  • Foerster 0 (1936) Motorische Felder and Bahnen. In: Bumke O, Foerster O (eds) Handbuch der Neurologic, vol 6. Springer, Berlin Heidelberg New York, pp 1–357

    Google Scholar 

  • Goldberg ME, Bruce CJ (1985) Cerebral cortical activity associated with the orientation of visual attention in the rhesus monkey. Vision Res 25: 471–481

    CAS  Google Scholar 

  • Goldberg ME, Bruce CI (1986) The role of arcuate frontal eye fields in the generation of saccadic eye movements. Prog Brain Res 64: 143–154

    Article  PubMed  CAS  Google Scholar 

  • Goldberg ME, Bushnell MC (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. J Neurophysiol. 46: 773–787 Goldberg ME, Bushnell MC, Bruce CJ (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp Brain Res 61: 579–584

    Google Scholar 

  • Guitton D, Buchtel HA, Douglas RM (1985) Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res 58: 455. 472

    Google Scholar 

  • Haenny PE, Schiller PH (1988) State dependent activity in the monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res 69: 225–244

    Article  PubMed  CAS  Google Scholar 

  • Heilman KM, Valenstein E, Goldberg ME (1987) Attention: behavior and neural mechanisms. In: Mount-castle VB, Plum F, Geiger SR (eds) The Nervous System, American Physiological Society, Maryland, pp 461–481(Handbook of physiology, vol 5 )

    Google Scholar 

  • Henn V, Biittner-Ennever JA, Hepp K (1982) The primate oculomotor system. A synthesis of anatomical, physiological and clinical data. Human Neurobiol 1: 77–95

    Google Scholar 

  • Heywood CA, Cowey A (1987) On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. J Neurosci, 7: 174–218

    Google Scholar 

  • Holmes G (1919) Disturbances of visual space perception. Br Med J 2: 230–233

    Article  PubMed  CAS  Google Scholar 

  • Holmes G, Horrax G (1919) Disturbances of spatial orientation and visual attention, with loss of stereoscopic visison. Arch Psychiatr 1: 385–407

    Google Scholar 

  • Hyvärinen J (1982) The parietal cortex of monkey and man. Springer, Berlin Heidelberg New York, 202 pp Jackson H (1932) Selected writings, vol II. J Taylor (ed). Hodder and Stoughton, London

    Google Scholar 

  • Julesz B (1985) Preconscious and conscious processes in vision. Exp Brain Res [Suppl] 11: 333–359

    Google Scholar 

  • Jung R (1974) Neuropsychologie and Neurophysiologie des Kontur-and Formsehens in Zeichnung and Malerei. In: Wieck HH (ed) Psychopathologie musischer Gestaltungen. Schattauer, Stuttgart, pp 29–88

    Google Scholar 

  • Keating EG, Gooley SG, Pratt SE, Kelsey JE (1983) Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye fields. Brain Res 269: 145–148

    Article  PubMed  CAS  Google Scholar 

  • Latto R (1978) The effects of bilateral frontal eye field, posterior parietal or superior collicular lesions on visual search in the rhesus monkey. Brain Res 146: 35–50

    Article  PubMed  CAS  Google Scholar 

  • Latto R, Cowey A (1971) Visual field defect after frontal eye-field lesions in monkeys. Brain Res. 30: 1–24 Lynch JC (1980) The role of parieto-occipital association cortex in oculomotor control. Exp Brain Res 41: A32

    Google Scholar 

  • Lynch JC (1987) Frontal eye field lesions in monkeys disrupt visual pursuit. Exp Brain Res 68: 437–441

    Article  PubMed  CAS  Google Scholar 

  • Lynch JC, McLaren JW (1979) Effects of lesions of parieto-occipital association cortex upon performance of oculomotor and attention tasks in monkeys. Neurosci Abstr 5: 794

    Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40: 362–389

    PubMed  CAS  Google Scholar 

  • Mitz AR, Wise SP (1987) The somatotopic organization of the supplementary motor area: intracortical microstimulation mapping. J Neurosci 7: 1010–1021

    PubMed  CAS  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229: 782–784

    Article  PubMed  CAS  Google Scholar 

  • Mountcastle VB (1976) The world around us. Neural command functions for selective attention. Neurosci Res Prog Bull 14, [Suppl]

    Google Scholar 

  • Mountcastle VB (1981) Functional properties of the light sensitive neurons of the posterior parietal cortex and their regulation by state controls: influence on excitability of interested fixation and the angle of gaze. In: Pompeiano O, Ajmone Marsan C (eds) Brain mechanisms of perceptual awareness and purposeful behavior. Raven, New York, pp 67–69 (IBRO monograph series, vol. 8 )

    Google Scholar 

  • Pöppel E, R Held and D Frost (1973) Residual visual functions after brain wounds involving the central visual pathway in man. Nature 243: 295–296

    Article  PubMed  Google Scholar 

  • Posner MI, JA Walker, FJ Friedrich and RD Rafal (1984) Effects of parietal injury on covert orienting of attention. J Neurosci 7: 1863–1874

    Google Scholar 

  • Robinson DA (1981) Control of eye movements. In: Brookhart JM, Mountcastle VB (eds) Motor control, part 2. American Physiological Society, Bethesda, pp 1275–1320 (Handbook of physiology, vol 2) Robinson DA, Fuchs AF (1969) Eye movements evoked by stimulation of frontal eye fields. J Neurophysiol 32: 637–648

    Google Scholar 

  • Robinson DA, Goldberg ME, Stanton GB (1978) Parietal association cortex in the primate: Sensory mechanisms and behavioral modulations. J Neurophysiol 41: 910–932

    Google Scholar 

  • Schiller PH, True SD, Conway JL (1979) Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Res 179: 162–164

    Article  PubMed  CAS  Google Scholar 

  • Schiller PH, Sandell JH, Maunsell JHR (1987) The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey. J Neurophysiol 57: 1033

    PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M (1985a) Unit activity-related to spontaneous saccades in frontal dorsomedial cortex of monkey. Exp Brain Res 58: 208–211

    Article  PubMed  CAS  Google Scholar 

  • Schlag J, Schlag-Rey M (1985b) Eye fixation units in the supplementary eye field of monkey. Neurosci Abstr 25: 23–82

    Google Scholar 

  • Schlag J, Schlag-Rey M(1987a) Evidence for a supplementary eye field. J Neurosci 57: 179

    Google Scholar 

  • Schlag J, Schlag-Rey M (1987b) Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp Brain Res 68: 442–444

    Article  PubMed  CAS  Google Scholar 

  • Stein J (1978) The effect of parietal lobe cooling on manipulative behavior in the conscious monkey. In: Gordon G (ed) Active touch. Pergamon, Oxford, pp 79–90

    Google Scholar 

  • Tanaka M, Weber H, Creutzfeldt OD (1986) Visual properties and spatial distribution of neurons in the vi- sual association area on the prelunate gyrus of the awake monkey. Exp Brain Res 63: 11–37

    Google Scholar 

  • Vogt C, Vogt 0 (1919) Allgemeinere Ergebnisse unserer Hirnforschung. IV. Die physiologische Bedeutung der architektonischen Rindenfelderung aufgrund unserer Rindenreizungen. J Psychol Neural 25: 401–461

    Google Scholar 

  • Wagmann IH (1964) Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: Bender MB (ed) The oculomotor system. Hoeber, New York. pp 1839

    Google Scholar 

  • Weiskrantz L, Warrington EK, Sanders MD, Marshall J (1974) Visual capacity in the hemianopic field following a restricted occipital ablation. Brain 97: 709–728

    Article  PubMed  CAS  Google Scholar 

  • Wise SP, Strick PL (1984) Anatomical and physiological organization of the non-primary motor cortex. TINS 7: 442ff

    Google Scholar 

  • Wurtz RH, Goldberg ME, Robinson DL (1982) Brain mechanisms of visual attention. In: Thompson RF (ed) Progress in neuroscience, pp 82–90 (readings from Scientific American)

    Google Scholar 

  • Yarbus AL (1967) Eye movements and vision. Plenum, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creutzfeldt, O.D. (1990). Parallel and Complementary Organization of Cortical Eye Movement Control and Visual Perception. In: Deecke, L., Eccles, J.C., Mountcastle, V.B. (eds) From Neuron to Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02601-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02601-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02603-8

  • Online ISBN: 978-3-662-02601-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics