Impact Ionization and Avalanche Breakdown

  • Karlheinz Seeger
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 40)

Abstract

Some aspects of impact ionization and avalanche breakdown in semiconductors are similar to the corresponding phenomena in gaseous discharges. Semiconductors may serve as model substances for gaseous plasmas since their ionic charges are practically immobile and therefore the interpretation of experimental data is facilitated. Impact ionization has been achieved both in the bulk of homogeneously doped semiconductors at low temperatures and in p-n junctions at room temperature. We will discuss these cases separately.

Keywords

Microwave Recombination GaAs Auger Germanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 10.1
    G. Lautz: Festkörper-Probleme VI, 21 ( Vieweg, Braunschweig 1961 )Google Scholar
  2. 10.2
    S.H. Koenig, G.R. Gunther-Mohr: J. Phys. Chem. Solids 2, 268 (1957)ADSCrossRefGoogle Scholar
  3. 10.3
    N. Sciar, E. Burstein: J. Phys. Chem. Solids 2, 1 (1967)Google Scholar
  4. 10.4
    K. Baumann, M. Kriechbaum, H. Kahlert: J. Phys. Chem. Solids 31, 1163 (1970)ADSCrossRefGoogle Scholar
  5. 10.5
    S.H. Koenig: In Proc. Int’l Conf. Solid State Physics, Brussels 1958, ed. by M. Desirant ( Academic, London 1960 ) p. 422Google Scholar
  6. 10.6
    M. Lax: J. Phys. Chem. Solids 8, 66 (1959)ADSCrossRefGoogle Scholar
  7. 10.7
    G. Bauer, F. Kuchar: Phys. Status Solidi (a) 13, 169 (1972)ADSCrossRefGoogle Scholar
  8. 10.8
    W.P. Dumke: Phys. Rev. 167, 783 (1968)ADSCrossRefGoogle Scholar
  9. 10.9
    R.C. Curby, D.K. Ferry: Phys. Status Solidi (a) 15, 319 (1973)ADSCrossRefGoogle Scholar
  10. 10.10
    G. Nimtz: In Proc. Int’l Conf. Phys. Semicond., Cambridge MA 1970, ed. By S.P. Keller, J.C. Hensel, F. Stern ( USAEC, Oak Ridge, TN 1970 ) p. 396Google Scholar
  11. 10.11
    A.L. McWhorter, R.H. Rediker: Proc. Int’l Conf. Phys. Semicond., Prague 1960 (Czech. Acad. Sciences, Prague 1960 ) p. 134Google Scholar
  12. 10.12
    B.K. Ridley: Proc. Phys. Soc., London 81, 996 (1963)CrossRefGoogle Scholar
  13. 10.13
    A.M. Barnett: IBM J. Res. Dev. 13, 522 (1969)CrossRefGoogle Scholar
  14. 10.
    R.F. Kazarinov, V.G. Skobov: Zh. Eksp. Teor. Fiz. 42 1047 (1962) [Engl. transl.: Sov. Phys. - JETP 15 726 (1962)]Google Scholar
  15. 10.15
    B. Ancker-Johnson: In Semiconductors and Semimetals, Vol.1, ed. by R.K. Willardson, A.C. Beer ( Academic, New York 1966 )Google Scholar
  16. 10.16
    A.G. Chynoweth, K.G. McKay: Phys. Rev. 108, 29 (1957)ADSCrossRefGoogle Scholar
  17. 10.17
    A.G. Chynoweth: Semiconductors and Semimetals 4, 263 ( Academic, New York 1968 )Google Scholar
  18. 10.18
    C.A. Lee, R.A. Logan, R.L. Batdorf, J.J. Kleimack, W. Wiegman: Phys. Rev. 134, A761 (1964)ADSCrossRefGoogle Scholar
  19. 10.19
    S.M. Sze: Physics of Semiconductor Devices, ( Wiley, New York 1969 ) p. 60Google Scholar
  20. 10.20
    G.A. Baraff: Phys. Rev. 128, 2507 (1962); ibid. 133, A26 (1964)Google Scholar
  21. 10.21
    J.E. Carroll: Hot Electron Microwave Generators ( Arnold, London 1970 )Google Scholar
  22. 10.22
    A.F. Gibson, J.W. Granville, E.G.S. Paige: J. Phys. Chem. Solids 19, 198 (1961)ADSCrossRefGoogle Scholar
  23. 10.23
    A.E. Michel, M.I. Nathan, J.C. Marinace: J. Appl. Phys. 35, 3543 (1964)ADSCrossRefGoogle Scholar
  24. 10.24
    W. Shockley: Bell Syst. Tech. J. 33, 799 (1954)Google Scholar
  25. 10.25
    W.T. Read: Bell. Syst. Tech. J. 37, 401 (1958)Google Scholar
  26. 10.26
    H. Hartnagel: Semiconductor Plasma Instabilities ( Heinemann, London 1969 )Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Karlheinz Seeger
    • 1
    • 2
  1. 1.Ludwig Boltzmann Institut für FestkörperphysikWienAustria
  2. 2.Institut für FestkörperphysikUniversität WienWienAustria

Personalised recommendations