White Matter and Myelin

  • Jacob Valk
  • Marjo S. van der Knaap

Abstract

Myelin makes up most of the substance of white matter in the central nervous system (CNS). It is also present in large quantities in the peripheral nervous system (PNS). In both the CNS and the PNS, myelin is essential for normal functioning of the nerve fibers.

Keywords

Cholesterol Glycerol Serine Lactose Topo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachelard HS (1976) Carbohydrate and energy metabolism of the central nervous system: biochemical approach. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neurology, vol 27. Amsterdam: North Holland Publishing Company: 1–27Google Scholar
  2. Benjamins JA, McKhann GM (1981) Development, regeneration and aging of the brain. In: Siegel GJ, Albers RW, Agranoff BV, Katzman R, eds. Basic neurochemistry, 3nd ed. Boston: Little, Brown and Company: 445–469Google Scholar
  3. Benjamins JA, Studzinski DM, Skoff RP (1986) Biochemical correlates of myelination in brain and spinal cord of mice heterozygous for the jimpy gene. J Neurochem 47: 1857–1863PubMedCrossRefGoogle Scholar
  4. Benveniste EN, Merrill JE (1986) Stimulation of oligodendroglial proliferation and maturation by interleukin-2. Nature 321: 610–613PubMedCrossRefGoogle Scholar
  5. Beriet HH, Volk B (1980) Studies of human myelin proteins during old age. Mech Ageing Dev 14: 211–222CrossRefGoogle Scholar
  6. Bologa L (1985) Oligodendrocytes, key cells in myelination and target in demyelinating diseases. J Neurosci Res 14: 1–20PubMedCrossRefGoogle Scholar
  7. Brady RO, Quarles RH (1973) The enzymology of myelination. Mol Cell Biol 2: 23–29Google Scholar
  8. Bunge RP, Bunge MB, Eldridge CF (1986) Linkage between axonal ensheathment and basal lamina production by schwann cells. Ann Rev Neurosci 9: 305–328PubMedCrossRefGoogle Scholar
  9. Cruz TF, Moscarello MA (1985) Characterization of myelin fractions from human brain white matter. J Neurochem 44: 1411–1418PubMedCrossRefGoogle Scholar
  10. Cumings JN (1963) The chemistry of myelin and some aspects of myelination. In: Rose A, Pearson C, eds. Mechanisms of demyelination. New York: McGraw-Hill: 45–57Google Scholar
  11. Davison AN (1966) Myelination as a vulnerable period in brain development. Brit Med Bull 20: 40–44Google Scholar
  12. Davison AN (1972) Biosynthesis of the myelin sheath. In: Lipids, malnutrition and the developing brain. Ca Ciba foundation symposium. New York: Elsevier: 73–90Google Scholar
  13. Davison AN, Peters A (1970) Myelination. Charles Thomas Publisher, SpringfieldGoogle Scholar
  14. Debuch H (1970) Biochemistry of normal lipid metabolism in the brain. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neurology, vol 10. Amsterdam: North Holland Publishing Company: 233–264Google Scholar
  15. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48: 757–767PubMedCrossRefGoogle Scholar
  16. Folch J, Casals J, Pope A, Meath JA, et al. (1959) A chemistry of myelin development. In: Korey S, ed. The biology of myelination. New York: Hoeber: 122–137Google Scholar
  17. Gerstil B, Eng LF, Hayman RB, Tavaststjerna MG, et al. (1967) On the composition of human myelin. J Neurochem 14: 661–670CrossRefGoogle Scholar
  18. Gilles FH (1976) Myelination in the neonatal brain. Hum Pathol 7: 244–248PubMedCrossRefGoogle Scholar
  19. Goebel HH (1984) Morphology of the Gangliosidoses. Neuropediatrics 15: 97–106PubMedCrossRefGoogle Scholar
  20. Gregorio FD, Ferrari G, Marini P, Siliprandi R, et al. (1984) The influence of gangliosides on neurite growth and regeneration. Neuropediatrics 15 suppl.: 93–96Google Scholar
  21. Harman PJ (1959) Genetics and myelinization. In: Korey S, ed. The biology of myelination. New York: Hoeber: 96–107Google Scholar
  22. Himwich WA, ed. (1970) Developmental neurobiology. Charles C Thomas Publisher, SpringfieldGoogle Scholar
  23. Himwich WA, ed. (1973) Biochemistry of the developing brain, vol 1 and 2. New York: Marcel Dekker IncGoogle Scholar
  24. Horrocks LA (1973) Composition and metabolism of myelin phosphoglycerides during maturation and aging. Prog Brain Res 40: 383–395PubMedCrossRefGoogle Scholar
  25. Kasama T, Taketomi T (1986) Abnormalities of Cerebral lipids in GM1-Gangliosidoses, Infantile, Juvenile, and Chronic Type. Jpn J Exp Med 56: 1–11Google Scholar
  26. Keene MFL, Hewer EE (1931) Some observations of myelination in the human central nervous system. J Anat 66: 1–13PubMedGoogle Scholar
  27. Kobayashi T, Shinnoh N, Goto I, Kuroiwa Y, et al. (1985) Galactosylceramide-and lactosylceramide-loading studies in cultured fibroblasts from normal individuals and patients with globoid cell leukodystrophy and GM1-gangliosidosis. Biochim Biophys Acta 835: 456–464PubMedCrossRefGoogle Scholar
  28. Kocsis JD, Waxman SG (1985) Demyelination: Causes and mechanisms of clinical abnormality and functional recovery. In: Koetsier JC, ed. Handbook of clinical neurology, vol 3. Amsterdam: Elsevier Science Publishers BV: 29–47Google Scholar
  29. Kohlschutter A (1984) Clinical course of GM Gangliosidoses. Neuropediatrics 15: 71–73PubMedCrossRefGoogle Scholar
  30. Laatsch RH, Kies MW, Gordon S, Alvord EC (1962) The encephalomyelitic activity of myelin isolated by ultracentrifugation. J Exp Med 115: 777–788PubMedCrossRefGoogle Scholar
  31. Ludin HP (1984) Function of myelin in the normal nerve fibre. Neuropediatrics 15: 21–23PubMedCrossRefGoogle Scholar
  32. Lutschg J (1984) Pathophysiological aspects of central and peripheral myelin lesions. Neuropediatrics 15: 24–27PubMedCrossRefGoogle Scholar
  33. Martin DW, Mayes PA, Rodwel VW, Grauner DK (1985) Harper’s review of Biochemistry, 21th ed. San Francisco: Lange medical publicationsGoogle Scholar
  34. Matthieu JM, Omlin FX (1984) Murine leukodystrophies as tools to study myelinogenesis in normal and pathological conditions. Neuropediatrics 15: 37–52PubMedCrossRefGoogle Scholar
  35. Metzler DE (1977) Biochemistry, the chemical reactions of living cells. New York: Academic PressGoogle Scholar
  36. Mickel HS, Gilles FH (1970) Changes in glial cells during hu-man telencephalic myelinogenesis. Brain 93: 337–346PubMedCrossRefGoogle Scholar
  37. Morell P, ed. (1984) Myelin, 2nd ed. New York: Plenum Press Norton WT, Autilio LA (1966) The lipid composition of puri-fied bovine brain myelin. J Neurochem 13: 213–222Google Scholar
  38. Norton WT, Poduslo SE (1966) Subacute sclerosing leuko-encephalitis. J Neuropath Exp Neurol 25: 582–597PubMedCrossRefGoogle Scholar
  39. Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21: 759–773PubMedCrossRefGoogle Scholar
  40. Norton WT, Poduslo SE (1973) Myelination in rat brain: method of myelin isolation. J Neurochem 21: 749–757 Norton WT, Poduslo SE (1973) Myelination in rat brain: changes in myelin composition during brain maturation. J Neurochem 21: 759–773Google Scholar
  41. Norton WT (1971) Recent developments in the investigations of purified myelin. In: Paoletti R, Davison AN, eds. Chemistry and brain development. New York: Plenum Press: 327–337CrossRefGoogle Scholar
  42. Norton WT (1981) Formation, structure, and biochemistry of myelin. In: Siegel GJ, Albers RW, Agranoff BV, Katzman R, eds. Basic neurochemistry, 3nd ed. Boston: Little, Brown and Company: 63–92Google Scholar
  43. Norton WT (1984) Recent advances in myelin biochemistry. Ann NY Acad Sci 436: 5–10PubMedCrossRefGoogle Scholar
  44. Norton WT (1984) Some thoughts on the neurobiology of the leukodystrophies. Neuropediatrics 15: 28–31PubMedCrossRefGoogle Scholar
  45. O’Brien JS (1965) Stability of the myelin membrane. Science 147: 1099–1107PubMedCrossRefGoogle Scholar
  46. Pampiglione G, Harden A (1984) Neurophysiological Investigation in GM1 and GM2 gangliosidoses. Neuropediatrics 15 suppl.: 74–84Google Scholar
  47. Percy AK, Mckhann GM (1970) The biochemistry of myelin and the leukodystrophies. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neurology, vol 10. Amsterdam: North Holland Publishing Company: 134–149Google Scholar
  48. Pereyra PM, Braun PE, Greenfield S, Hogan EL (1983) Studies on subcellular fractions which are involved in myelin assembly: labeling of myelin proteins by a double radioisotope approach indicates developmental relationships. J Neurochem 41: 974–988PubMedCrossRefGoogle Scholar
  49. Poduslo SE, Jang Y (1984) Myelin development in infant brain. Neurochem Res 9: 1615–1626PubMedCrossRefGoogle Scholar
  50. Remahl S, Hildebrand C (1982) Changing relation between onset of myelination and axon diameter range in developing feline white matter. J Neurol Sci 54: 33–45PubMedCrossRefGoogle Scholar
  51. Rodriguez M, Lennon VA, Benveniste EN, Merrill JE (1987) Remyelination by oligodendrocytes stimulated by antiserum to spinal cord. J Neuropathol Exp Neurol 46: 84–95PubMedCrossRefGoogle Scholar
  52. Sandhoff K, Conzelmann E (1984) The Biochemical Basis of Gangliosidoses. Neuropediatrics 15 suppl.: 85–92Google Scholar
  53. Schwab ME, Vassella F (1984) Synopsis: Gangliosidoses. Neuropediatrics 15: 107–109Google Scholar
  54. Shapira R, Binkley F, Kibler RF, Wundram IJ (1970) Preparation of purified myelin of rabbit brain by sedimentation in a continuous sucrose gradient. Proc Soc Exp Biol Med 133: 238–245PubMedGoogle Scholar
  55. Shapira R, Mobley WC, Thiele SB, Wilhelmi MR, et al. (1978) Localization of 2’,3’-cyclic nucleotide-3’-phosphohydrolase of rabbit brain by sedimentation in a continuous sucrose gradient. J Neurochem 30: 735–744PubMedCrossRefGoogle Scholar
  56. Stam FC, Deierkauf FA, Heslinga FJM (1962) Histochemical and chromatographic study of the normal myelin sheath. Psychiat Neurol Neurochir 65: 242–253PubMedGoogle Scholar
  57. Strijer L (1981) Biochemistry, 2nd ed. New York: WH Freeman and companyGoogle Scholar
  58. Suzuki K, Poduslo SE, Norton WT (1967) Gangliosides in the myelin fraction of developing rats. Biochim Biophys Acta 144: 375–381PubMedCrossRefGoogle Scholar
  59. Suzuki K, Suzuki K, Kamoshita S (1969) Chemical pathology of GM1 Gangliosidoses. J Neuropathol Exp Neurol 28: 25–73PubMedCrossRefGoogle Scholar
  60. Suzuki K (1978) Biochemistry of myelin disorders. In: Waxman SG, ed. Physiology and Pathobiology of Axons. New York: Raven Press: 337–347Google Scholar
  61. Suzuki K (1984) Gangliosides and disease: a review. Adv Exp Med Biol 74: 407–418CrossRefGoogle Scholar
  62. Svennerholm L (1968) Distribution and fatty acid composition of phosphoglycerides in normal human brain. J Lipid Res 9: 570–579PubMedGoogle Scholar
  63. Svennerholm L, Stallberg-Stenhagen S (1968) Changes in the fatty acid composition of cerebrosides and sulfatides of human nervous tissue with age. J Lipid Res 9: 215–225PubMedGoogle Scholar
  64. Sweasey D, Patterson DSP, Glancy EM (1976) Biphasic myelination and the fatty acid composition of cerebrosides and cholesterol esters in the developing central nervous system of the domestic pig. J Neurochem 27: 375–380PubMedCrossRefGoogle Scholar
  65. Szuchet S, Polak PE, Yim SH (1986) Mature oligodendrocytes cultured in the absence of neurons recapitulate the ontogenic development of myelin membranes. Dev Neurosci 8: 208–221PubMedCrossRefGoogle Scholar
  66. Thompson EB (1970) The biochemistry of the lipids and proteins of white matter. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neurology, vol 9. Amsterdam: North Holland Publishing Company: 1–22Google Scholar
  67. Waxman SG (1985) Structure and function of the myelinated Lysosomes and Lysosomal Disorders fiber. In: Koetsier JC, ed. Handbook of clinical neurology, vol 3. Amsterdam: Elsevier Science Publishers BV: 1–28Google Scholar
  68. Wells MA, Dittmer JC (1967) A comprehensive study of the postnatal changes in the concentration of the lipids of developing rat brain. Biochemistry 6: 3169–3175PubMedCrossRefGoogle Scholar
  69. Wood PA, McBride MR, Baker HJ, Christian ST (1985) Fluorescence Polarization Analysis, Lipid Composition and Na+, K+-ATPase Kinetics of Synaptosomal Membranes in Feline GM1 and GM2 Gangliosidosis. J Neurochem 44: 947–956PubMedCrossRefGoogle Scholar
  70. Yakovlev PI, Lecours AR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A, ed. Regional development of the brain in early life. Oxford: Blackwell: 3–70Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Jacob Valk
    • 1
  • Marjo S. van der Knaap
    • 2
  1. 1.Department of Diagnostic Radiology and NeuroradiologyFree University HospitalAmsterdamThe Netherlands
  2. 2.Department of Child NeurologyAcademic HospitalUtrechtThe Netherlands

Personalised recommendations