The Prediction of Multicommodity Freight Flows: A Multiproduct Multimode Model and a Solution Algorithm

  • Michael Florian
  • Jacques Guélat
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 317)

Abstract

We present in this paper a normative model for simulating freight flows of multiple products on a multimodal network. The multimodal aspects of the transportation system considered are accounted for in the network representation chosen. The multiproduct aspects of the model are exploited in the solution procedure, which is a Gauss-Seidel — Linear Approximation Algorithm. An important component of the solution algorithm is the computation of shortest paths with intermodal transfer costs. Computational results obtained with this algorithm on a network that corresponds to the Brazil transportation network are presented.

Keywords

Transportation Diesel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bronzini M.S. (1980), Evolution of a multimdal freight transportation network model. Proceedings of the 21st Annual Meeting Transportation Research Forum 475–485.Google Scholar
  2. Casaletto J.J., Rice J.R. (1978), Smoothing and Estimation Derivates of Equispaced Data. Applicable Analysis 8: 143–152.CrossRefGoogle Scholar
  3. Crainic T.G., Florian M., Leal E. (1987), A model for the strategic planning of freight transportation by rail. Publication #518 Centre de recherche sur les transports, Université de Montréal.Google Scholar
  4. Florian M., Los M. (1982), A new look at static price equilibrium models. Regional Science and Urban Economics 12: 579–597.CrossRefGoogle Scholar
  5. Florian M. (1986), Nonlinear Cost Network Models in Transportation Analysis. Mathematical Programming Study 26: 167–196.CrossRefGoogle Scholar
  6. Frank M., Wolfe P. (1956), An Algorithm for Quadratic Programming. Naval Research Logistics Quarterly 3: 95–110.CrossRefGoogle Scholar
  7. Friesz T.L., Tobin R.L., Harker P.T. (1983), Predictive intercity freight network models. Transportation Research 17A: 409–417.CrossRefGoogle Scholar
  8. Friesz T.L., Gottfried J.A., Morlok E.K. (1986), A sequential shipper-carrier network model for predicting freight flows. Transportation Science 20: 80–91.CrossRefGoogle Scholar
  9. Guélat J. (1986a), Calcul des dérivées (patielles) des fonctions de coût dans le progiciel STAN. Publication #535 Centre de recherche sur les transports, University of Montreal.Google Scholar
  10. Guélat J. (1986b), Une procédure de résolution du problème d’affectation multimode-multiproduct par décomposition sur un espace produit. Publication #488 Centre de recherche sur les transports, University of Montreal.Google Scholar
  11. Jones P.S., Sharp G.P. (1979), Multi-mode intercity freight transportation planning for underdeveloped regions. Proceedings of the 20th Annual Meeting Transportation Research Forum.Google Scholar
  12. Kellison S.G. (1975), Fundamentals of numerical analysis. Richard D Irwin Inc. Homewood Illinois.Google Scholar
  13. Kresge D.T., Roberts P.O. (1971), System analysis and simulation models. In Techniques of Transport Planning Meyers JR (ed) vol. 2 Brookings Institute Washington D.C.Google Scholar
  14. McGinnis L.F., Sharp G.P., Yu D.H.C. (1981), Procedures for multi-state, multi-mode analysis: vol. IV. Transportation Modeling and Analysis U.S. D.O.T. report no. DOT-OST-80050–17/V.N.Google Scholar
  15. Potts R.B., Oliver R.M. (1972), Flows in Transportation Networks. Academic Press NY.Google Scholar
  16. Samuelson P.A. (1952), Spatial price equilibrium and linear programming. American Economic Review 42: 283–303.Google Scholar
  17. Sharp G.P. (1979), A multi-commodity intermodal transportation model. Proceedings of the 20th Annual Meeting Transportation Research Forum.Google Scholar
  18. Spiess H. (1984), Contribution à la théorie et aux outils de planification des réseaux de transports urbains. Ph.D. thesis Département d’Informatique et de Recherche opérationnelle Université de Montréal Publication #382 Centre de recherche sur les transports, University of Montreal.Google Scholar
  19. Takayama T., Judge G.G. (1964), Equilibrium among spatially separated markets: a reformulation. Econometrica 32: 510–524.CrossRefGoogle Scholar
  20. Takayama T., Judge G.G. (1970), Alternative spatial price equilibrium models. Journal of Regional Sceince 10: 1–12.CrossRefGoogle Scholar
  21. Zangwill W.I. (1969), Nonlinear programming — a unified approach. Prentice Hall Englewood Cliffs NJ.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Michael Florian
    • 1
  • Jacques Guélat
    • 1
  1. 1.Centre de recherche sur les transportsUniversité de MontréalMontréalCanada

Personalised recommendations