Advertisement

Necessary Conditions and Sufficient Conditions for Optimality

  • D. A. Carlson
  • A. Haurie
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 290)

Abstract

In this chapter we present both necessary conditions and sufficient conditions for optimality. These conditions are obtained by generalizing the appropriate finite horizon results. In particular we present the Pontryagin Maximum Principle, and its extension to the infinite horizon.

Keywords

Maximum Principle Optimal Trajectory Optimal Control Theory Admissible Pair Infinite Horizon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Halkin, Necessary Conditions for Optimal Control Problems with Infinite Horizon, Econometrics, Vol. 42, pp. 267–273, 1974.CrossRefGoogle Scholar
  2. 2.
    L. S. Pontryagin et al ii, The Mathematical Theory of Optimal Processes, J. Wiley 1962.Google Scholar
  3. 3.
    H. Halkin, Mathematical Foundations of System Optimization, in G. Leitmann edit., Topics in Optimization, Academic Press 1967Google Scholar
  4. 4.
    A. Blaquiere and G. Leitmann, On the Geometry of Optimal Processes, in G. Leitmann edit., Topics in Optimization, Academic Press 1967.Google Scholar
  5. 5.
    G. Leitmann, The Calculus of Variations and Optimal Control, Plenum Press 1981.CrossRefGoogle Scholar
  6. 6.
    O. L. Mangasarian, Sufficient Conditions for the Optimal Control of Non-Linear Systems, SIAM Journal on Control, Vol. 4, pp. 139–152, 1966.CrossRefGoogle Scholar
  7. 7.
    K. Arrow, and M. Kurz, See Ref. 7 of Lecture 1.Google Scholar
  8. 8.
    G. Leitmann and H. Stalford, A Sufficiency Theory for Optimal Control, Journal of Optimization Theory and Applications, Vol. 8, no. 3, 1971.Google Scholar
  9. 9.
    D. W. Peterson, A sufficient Maximum Principle, IEEE Trans. Autom. Control, Feb. 1971, pp. 85–86.Google Scholar
  10. 10.
    C. D. Feinstein and D. G. Luenberger, Analysis of the Asymptotic behavior of Optimal Control Trajectories: The implicit Programming Problem, SIAM Journal on Control and Optimization, Vol. 19, no. 5, Sept. 1981, pp. 561–585.CrossRefGoogle Scholar
  11. 11.
    A. Seierstad and K. Sydsaeter, Sufficient Conditions in Optimal Control Theory, Int. Econ. Review, Vol. 18, no. 2, 1977.Google Scholar
  12. 12.
    Michel, P. Une Démonstration Élémentaire du Principe de Maximum de Pontryagin, Bulletin de Mathématique Economiques, Vol. 14, 1977, pp. 9–23Google Scholar
  13. 13.
    F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley and Sons, Inc., 1983.Google Scholar

Additional References

  1. 14.
    Peterson, D. W. and Zalkind, J. H., A Review of Direct Sufficient Conditions in Optimal Control Theory, International Journal on Control, Vol. 28, no. 4, 1978.Google Scholar
  2. 15.
    Sethi, S. P. and Thompson, G. L., Optimal control Theory: Management Science Applications, Martinus Nijhoff Pub. Co., Boston, MA, 1981.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • D. A. Carlson
    • 1
  • A. Haurie
    • 2
    • 3
  1. 1.Department of MathematicsSouthern Illinois University at CarbondaleCarbondaleUSA
  2. 2.École des Hautes Études CommercialesMontréalCanada
  3. 3.École Polytechnique de MontréalMontréalCanada

Personalised recommendations