Advertisement

Interactive Methods for Multi-Objective Integer Linear Programming

  • J. TeghemJr.
  • P. L. Kunsch
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 273)

Abstract

For the last 15 years, many Multi-Objective Linear Programming (MOLP) methods with continuous solutions have been developed. In many real world applications, however, discrete variables must be introduced representing, for instance, an investment choice, a production level, etc. The linear mathematical structure is then Integer Linear Programming (ILP), associated with MOLP giving a MOILP problem. Unfortunately, this type of problems has its own difficulties, as it cannot be solved by simply combining ILP and MOLP methods.

Keywords

Integer Linear Program Efficient Solution Objective Space Linear Relaxation Multiple Criterion Decision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    V. J. Bowman Jr., “On the Relationship of the Tchebycheff Norm and the Efficient Frontier of Multiple-Criteria Objectives”, in : H. Thiriez, S. Zionts, Eds. Multiple Criteria Decision Making (Springer Verlag, Berlin, 1976), pp. 76–85.CrossRefGoogle Scholar
  2. [2]
    G. W. Evans, “Overview of Techniques for solving Multi-Objective Mathematical Programs”, in : Mn.Sc Vol 30, 11, (1984), pp. 1268– 1282.CrossRefGoogle Scholar
  3. [3]
    J.J. Gonzalez, G.R. Reeves, L.S. Franz, “An Interactive Procedure for solving Multiple Objective Integer Linear Programming Problems, in : Y. Haimes, V. Chankong, Eds., Decision Making with Multiple Objectives (Springer Verlag, 1985), pp. 250–260.CrossRefGoogle Scholar
  4. [4]
    K. Huckert, R. Rhode, O. Roglin, R. Weber, “On the Interactive Solution to a Multi-Criteria Scheduling Problem”, in : Z.Oper.Res., Vol 24 (1980), pp. 47–60.Google Scholar
  5. [5]
    R. Jaikumar, B. Fisheries, “A Heuristic 0–1 Algorithm with Multiple Objectives and Constraints”, in : J.L. Cochrane, M. Zeleny, Eds., Multiple Criteria Decision Making (University of South Carolina Press, 1973), pp. 745–748.Google Scholar
  6. [6]
    M.H. Karwan, S. Zionts, B. Villarreal, R. Ramesh, “An Improved Interactive Multi-Criteria Integer Programming Algorithm”, in : Y. Haimes, V. Chankong, Eds., Decision Making with Multiple Objectives (Springer Verlag, 1985), pp. 261–271.CrossRefGoogle Scholar
  7. [7]
    K.J. Musselman, J. Talavage, “A Trade Off Cut Approach to Multiple Objective Optimization”, in : Oper. Res. 28 (1980), pp. 1424–1435.CrossRefGoogle Scholar
  8. [8]
    R. Slowinski, J. Weglarz, “An Interactive Algorithm for Multi-Objective Precedence and Resource Constrained Scheduling Problems”, in : W. Urietholl, J. Visser, H.H. Boerma, Eds., Proceedings 8th International Congress (North Holland, 1985), pp. 866–873.Google Scholar
  9. [9]
    R.E. Steuer, E.U. Chop, “An Interactive Method Weighted Tchebycheff Procedure for Multiple Objective Programming”, in : Math.Progr. 26 (1983), pp. 326–344.CrossRefGoogle Scholar
  10. [10]
    J. Teghem Jr., P.L. Kunsch, “Characterization of Efficient Solutions for Multi-Objective Integer Linear Programming”, in : Technical Report (Faculté Polytechnique de Mons, Belgium, 1985), submitted for publication.Google Scholar
  11. [11]
    B. Villarreal, M. Karwan, S. Zionts, “An Interactive Branch and Bound Procedure for Multicriterion Integer Linear Programming”, in : Fandel, T. Gal, Eds., Multiple Criteria Decision Making, Theory and Application (Springer Verlag, 1980), pp. 448–467.CrossRefGoogle Scholar
  12. [12]
    B. Villarreal, M. Karwan, “Multi-Criteria Integer Programming : a (Hybrid) Dynamic Programming Recursive Approach”, in : Mathematical programming, 21 (1981), pp. 204–223.CrossRefGoogle Scholar
  13. [13]
    B. Villarreal, M. Karwan, “An Interactive Dynamic Programming Approach to Multi-Criteria Discrete Programming”, in : Journal of Mathematical Analysis and Applications, 81 (1981), pp. 524–544.CrossRefGoogle Scholar
  14. [14]
    D.J. White, “A Multiple Objective Interactive Lagrangean Relaxation Approach”, in : European Journal of Operational Research, 19 (1985), pp. 82–90.CrossRefGoogle Scholar
  15. [15]
    S. Zionts, “Integer Linear Programming with Multiple Objectives”, in : Annals of Discrete Mathematics 1 (1977), pp. 551–562, North Holland.CrossRefGoogle Scholar
  16. [16]
    S. Zionts, “A Survey of Multiple Criteria Integer Programming Methods”, in : Annals of Discrete Mathematics 5 (1979), pp. 389–398, North Holland.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • J. TeghemJr.
    • 1
  • P. L. Kunsch
    • 2
  1. 1.Faculté Polytechnique de MonsMonsBelgium
  2. 2.Belgonucleaire S. A.BrusselsBelgium

Personalised recommendations