Advertisement

Parallel-Transport Experiments in 2D Systems

  • R. A. Höpfel
Conference paper
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 67)

Abstract

Transport experiments in two-dimensional (2D) carrier systems are reviewed, with emphasis on high-field transport relevant for modern device structures (Si-MOSFETs, GaAs-AlGaAs heterostructures and quantum wells). Three methods have been applied to investigate parallel transport in 2D systems: (l) current measurements with simultaneous Hall- or magnetoresistance measurements, (2) direct drift time (“time-of-flight”) measurements with picosecond opto-electronic techniques, (3) modeling of dynamical device performance. Hot carrier effects (optical-phonon emission, real-space and valley transfer) play a central role for the understanding of the velocity-field characteristics in these systems.

Keywords

Drift Velocity Parallel Transport Space Charge Effect Negative Differential Conductivity Energy Loss Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. M. Sze, “Physics of Semiconductor Devices”, 2nd ed., Wiley & Sons, New York 1981.Google Scholar
  2. [2]
    For recent reviews, see: S. Hiyamizu, Proc. 2nd Int. Conf. on “Modulated Semiconductor Structures”, Kyoto, Japan 1985, Surface Sci. (1986, in print)Google Scholar
  3. [2a]
    T. P. Pearsall, Surface Sci. 142, 529 (1984).CrossRefGoogle Scholar
  4. [3]
    N. J. Shah, S. S. Pei, C. W. Tu, IEEE Trans. Electron. Devices (May 1986, in print).Google Scholar
  5. [4]
    H. Dambkes, K. Heime, Springer Series in Solid State Sciences 53, 125 (1984).CrossRefGoogle Scholar
  6. [5]
    H. Sakaki, Jpn. J. Appl. Phys. 21, L381 (1982).CrossRefGoogle Scholar
  7. [6]
    K. Seeger, “Semiconductor Physics” (2nd ed.), Ch. 4, Springer-Verlag, Berlin Heidelberg 1982.Google Scholar
  8. [7]
    W. T. Masselink, W. Kopp, T. Henderson, H. Morkoc, IEEE Electron. Device Lett. 6, 539 (1985).CrossRefGoogle Scholar
  9. [8]
    M. Inoue, Superlattices and Microstructures 1, 433 (1985).CrossRefGoogle Scholar
  10. [9]
    J. Shah, IEEE J. Quantum Electron, (special issue on Quantum Well structures, 1986, in print).Google Scholar
  11. [10]
    K. Tsubaki, T. Fukui, H. Saito, Appl. Phys. Lett. 46, 875 (1985).CrossRefGoogle Scholar
  12. [11]
    “Landolt-Bornstein” Vol. III/17a (ed. O. Madelung), p. 531, Springer-Verlag Berlin 1982.Google Scholar
  13. [12]
    E. F. Schubert, K. Ploog, H. Dambkes, K. Heime, Appl. Phys. A33, 183 (1984).Google Scholar
  14. [13]
    K. Tsubaki, A. Livingstone, M. Kawashima, H. Okamoto, K. Kumabe, Solid State Comm. 46, 517 (1983).CrossRefGoogle Scholar
  15. [14]
    M. Al-Mudares, B. K. Ridley, Physica 134B, 526 (1985).Google Scholar
  16. [15]
    For a review on the time-of-flight technique, see: L. Reggiani, in “Physics of Nonlinear Transport in Semiconductors,” p. 243, Plenum Press, New York 1980, and references therein.CrossRefGoogle Scholar
  17. [16]
    J. G. Ruch, G. S. Kino, Phys. Rev. B&, 2693 (1973).Google Scholar
  18. [17]
    J. A. Cooper, Jr., D. F. Nelson, J. Appl. Phys. 54, 1445 (1983).CrossRefGoogle Scholar
  19. [18]
    D. F. Nelson, J. A. Cooper, Jr., A. R. Tretola, Appl. Phys. Lett. 41, 857 (1982).CrossRefGoogle Scholar
  20. [19]
    R. A. Hopfel, J. Shah, A. C. Gossard, W. Wiegmann, Physica 134B, 509 (1985).Google Scholar
  21. [20]
    R. A. Hopfel, J. Shah, D. Block, A. C. Gossard, Appl. Phys. Lett. 48, 148 (1986).CrossRefGoogle Scholar
  22. [21]
    R. A. Hopfel, J. Shah, A. C. Gossard, Phys. Rev. Lett. 56, 765 (1986).CrossRefGoogle Scholar
  23. [22]
    A. Von Lehmen, J. M. Ballantyne, Appl. Phys. Lett. 44, 87 (1984).CrossRefGoogle Scholar
  24. [23]
    B. F. Levine, W. T. Tsang, C. G. Bethea, F. Capasso, Appl. Phys. Lett. 41, 470 (1982).CrossRefGoogle Scholar
  25. [24]
    R. L. Fork, Physica 134B, 381 (1985).Google Scholar
  26. [25]
    K. Hess, J. Physique C7, 3 (1981).Google Scholar
  27. [26]
    For a review, see: K. Hess, G. J. Iafrate, Springer Topics in Appl. Physics 58, 201 (1985).CrossRefGoogle Scholar
  28. [27]
    H. Kroemer, Proc. 2nd Int. Conf. on “Modulated Semiconductor Structures, ” Kyoto, Japan 1985, Surface Sci. (1986, in print).Google Scholar
  29. [28]
    J. Shah, A. Pinczuk, A. C. Gossard, W. Wiegmann, Phys. Rev. Lett. 54, 2045 (1985).CrossRefGoogle Scholar
  30. [29]
    Y. Takanashi, N. Kobayashi, IEEE Electron Device Lett. 6 154, (1985).CrossRefGoogle Scholar
  31. [30]
    T. Mimura, M. Abe, A. Shibatomi, M. Kobayashi, Proc. 6th Int. Conf. on “Electronic Properties of Two-Dimensional Systems, ” Kyoto, Japan, 1985, Surface Sci. (1986, in print).Google Scholar
  32. [31]
    S. Luryi, A. Kastalsky, Physica 134B, 453 (1985), and S. Luryi, this volume.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • R. A. Höpfel
    • 1
    • 2
  1. 1.AT&T Bell LaboratoriesHolmdelUSA
  2. 2.Institut für ExperimentalphysikUniversität InnsbruckAustria

Personalised recommendations