Advertisement

Kinks and Spatially Complex Behavior in One-Dimensional Coupled Map Lattices

  • Kunihiko Kaneko
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)

Abstract

Recent studies on low-dimensional dynamical systems have had great success in elucidating the onset of turbulence and various aspects of chaos [1]. The success, however, is limited to systems with a few number of excited modes. Then, what happens in a system with a large number of excited modes and with a spatial complexity? Can the low-dimensional chaos be an elementary process for the turbulence? Furthermore, spatial patterns are important for the understanding of turbulence. How are the patterns in nonlinear systems characterized? What is the effect of spatial patterns on the onset of chaos?

Keywords

Flat Region Excited Mode Laminar Region Probabilistic Cellular Automaton Kink Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See for recent advances, Chaos and Statistical Methods(ed. Y. Kuramoto, Springer, 1984; Proceeding of the previous Kyoto Summer Institute )Google Scholar
  2. 2.
    J. C. Eilbeck, P. S. Lomdahl and A. C. Newell, Phys Lett. 87A (1981) 1CrossRefGoogle Scholar
  3. 3.
    D. Bennet, A. R. Bishop and S. E. Trullinger, Z. Phys. B47 (1982) 265CrossRefGoogle Scholar
  4. 4.
    K. Nozaki, Phys Rev. Lett. 49 (1982) 1883; K. Nozaki and N. Bekki, Phys. Lett. 102A (1984) 383CrossRefGoogle Scholar
  5. 5.
    M. Imada, J. Phys. Soc. Jpn. 52 (1983) 1946CrossRefGoogle Scholar
  6. 6.
    K. Kaneko, Prog. Theor. Phys. 69(1983) 1427; see also J. M. Yuan, M. Tung, D.H. Feng, L.M. Naruducci, Phys. Rev. A28 (1983) 1662;T. Hogg and B.A. Huberman, Phys. Rev. 29A (1984) 275; see also for the case with N.6, I. Waller and R. Kapral, preprint (1984) submitted to Phys Rev. AGoogle Scholar
  7. 7.
    K. Kaneko, Prog. Theor. Phys. 72 (1984) No. 3Google Scholar
  8. 8.
    T. Yamada and H. Fujisaka, Prog. Theor. Phys. 70 (1983) 1240 and preprint (1984) to appear in Prog. Theor. Phys.Google Scholar
  9. 9.
    Y. Aizawa, preprint (1984) Kyoto Univ.Google Scholar
  10. 10.
    M.J. Feigenbaum, J. Stat. Phys. 19 (1978) 25, 21 (1979) 669Google Scholar
  11. 11.
    W.P. Su, J.R. Schrieffer and A.J. Heeger, Phys. Rev. Lett. 42, (1979) 1698CrossRefGoogle Scholar
  12. 12.
    A summary of the recent studies on the transition from torus to chaos can be seen in K. Kaneko, Ph. D. Thesis, Univ. of Tokyo, 1983 (unpublished)Google Scholar
  13. 13.
    Y. Pomeau and P. Manneville, Comm. Math. Phys. 74 (1980) 189; see also J.E. Hirsch, B.A. Huberman and D.J. Scalapino, Phys. Rev. A25 (1982) 519Google Scholar
  14. 14.
    S. Takesue and K. Kaneko, Prog. Theor. Phys. 72 (1984) 35CrossRefGoogle Scholar
  15. 15.
    S. Wolfram, Rev. Mod. Phys. 55 (1983) 601; P. Grassberger, F. Krause, and T. Twer, J. Phys. A17 (1984) L105Google Scholar
  16. 16.
    See also R. J. Deissler, Phys. Lett. 100A (1984) 451CrossRefGoogle Scholar
  17. 17.
    V.M. Alekseev and M.V. Yakobson, Phys. Rep. 75 (1981) 287; see also S. Wolfram, Physica 10D (1984) 1Google Scholar
  18. 18.
    C. Grebogi, E. Ott and J. A. Yorke, Phys. Rev. Lett. 51 (1983) 339 and preprint (1984)Google Scholar
  19. 19.
    K. Kaneko, Prog. Theor. Phys. 71 (1984) 282 and to appear in Theory of Dynamical Systems and Its Applications to Nonlinear Problems (ed. H. Kawakami, World Sci. Co. Pub.)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Kunihiko Kaneko
    • 1
  1. 1.Department of Physics, Faculty of ScienceUniversity of TokyoHongo, Bunkyo-ku, Tokyo 113Japan

Personalised recommendations