Advertisement

Soliton Propagation Properties in a Josephson Transmission Line

  • J. Nitta
  • A. Matsuda
  • T. Kawakami
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)

Abstract

Recently, the soliton concept in nonlinear dispersive waves is applied in solid state physics[1],[2]. A sine-Gordon soliton in particular is widely used as a model for dislocations in crystals, dc*nain walls in ferranagnetics and excitations in the charge-density-wave(CLW) state. A quantized magnetic flux also exhibits the sine-Gordon soliton properties in a Josephson transmission line(JIL)[3],[4],[5]. However, an actually fabricated JTL obeys the following modified sine-Gordon equation, taking perturbational losses into account:
$$ \frac{{{\partial ^2}\Phi }}{{\partial {x^2}}} - \frac{{{\partial ^2}\Phi }}{{\partial {t^2}}} = \sin \Phi + \alpha \frac{{\partial \Phi }}{{\partial t}} - \beta \frac{{{\partial ^3}\Phi }}{{{\partial ^2}x\partial t}} - \gamma $$
(1)
, where α, β and γ are associated with quasiparticle tunneling loss, superconducting rf loss and an artificially provided bias current, respectively.

Keywords

Soliton Propagation Bias Level Fixed Bias Coupling Resistor Propagation Delay Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    A.C. Scott, F.Y.F. Chu and D.W. McLaughlin: Proc. IEEE 61 1443 (1973)CrossRefGoogle Scholar
  2. [2]
    A.R. Bishop and T. Schneider: Soliton and Condensed Matter, Springer Series of Solid State Science 8, Springer-Verlag (1978)Google Scholar
  3. [3]
    A.C. Scott: Nuovo Ciment 69B 241 (1970)CrossRefGoogle Scholar
  4. [4]
    T.A. Fulton, R.C. Dynes and P.W. Anderson: Proc. IEEE 61 28 (1973)CrossRefGoogle Scholar
  5. [5]
    K. Nakajima, Y. Chodera, T. Nakamura and R. Sato: J.Appl.Phys. 45 4095 (1974)CrossRefGoogle Scholar
  6. [6]
    A. Matsuda and S. Uehara: Appl.Phys.lett. 41 770 (1982)CrossRefGoogle Scholar
  7. [7]
    A. Matsuda and T. Kawakami: Phys.Rev.Lett. 51 694 (1983)CrossRefGoogle Scholar
  8. [8]
    A.C. Scott, F.Y.F. Chu and S.A. Reible: J.Appl.Phys. 47 3272 (1976)CrossRefGoogle Scholar
  9. [9]
    J. Nitta, A. Matsuda and T. Kawakami: J.Appl.Phys. 55 2758 (1984)CrossRefGoogle Scholar
  10. [10]
    K. Nakajima, Y. Onodera and Y. Ogawa: J.Appl.Phys. 47 1620 (1976)CrossRefGoogle Scholar
  11. [11]
    A. Matsuda and H. Yoshikiyo: J.Appl.Phys. 52 5727 (1981)CrossRefGoogle Scholar
  12. [12]
    D.W. McLaughlin and A.C. Scott: Appl.Phys.Lett. 30 545 (1977)CrossRefGoogle Scholar
  13. [13]
    D.W. McLaughlin and A.C. Scott: Phys.Rev. A18 1652 (1978)CrossRefGoogle Scholar
  14. [14]
    J. Nitta, A. Matsuda and T. Kawakami: Appl.Phys.Lett. 44 808 (1984)CrossRefGoogle Scholar
  15. [15]
    H.S. Newman and K.L. Davis: J.Appl.Phys. 53 7026 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • J. Nitta
    • 1
  • A. Matsuda
    • 1
  • T. Kawakami
    • 1
  1. 1.Musashino Electrical Communication LaboratoryNippon Telegraph and Telephone Public CorporationMusashino-shi, Tokyo 180Japan

Personalised recommendations