Advertisement

A Field Theorist’s View of Conducting Polymers: Solitons in Polyacetylene and Related Systems

  • David K. Campbell
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)

Abstract

From the perspective of a theoretical physicist, one of the most exciting recent examples of serendipitous interaction between apparently unconnected fields has been the recognition that relativistic field theory models, originally concocted by high energy physicists as theoretical “laboratories” to explore certain features of quantum field theory, can actually be directly applied to real condensed matter systems. The best-known example of this “field theory connection” is polyacetylene -- (CH)x -- a quasi-one dimensional organic polymer whose exotic properties have stimulated considerable interest in the past several years [1].

Keywords

Single Electron Electron Wave Function Relativistic Field Theory Nonlinear Excitation Degenerate Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews and collections of relevant articles see Proceedings of the International Conference on Synthetic Metals, Abano Terme, Italy, June 1984 (Liq. Cryst. Mol. Cryst., to be published); Proceedings of the International Conference on Synthetic Conductors and Superconductors in Low Dimensions, Les Arcs, France, December 1982, J. Phys. Colloq. C3, No. 6, 44 (1983); Proceedings of the International Conference on Low-Dimensional Conductors, Boulder, Colorado, August 1981, Mol. Cryst. Liq. Cryst. 77, 1981; Physics in One Dimension, eds. J. Bernasconi and T. Schneider(Springer Verlag, 1981 )Google Scholar
  2. A. J. Heeger and A. G. MacDiarmid, in The Physics and Chemistry of Low Dimensional Solids, ed. L. Alcâcer (Reidel, 1980 ), pp. 353–391Google Scholar
  3. S. Etemad, A. J. Heeger, and A. G. MacDiarmid, Ann. Rev. Phys. Chem. 33 443–469 (1982)CrossRefGoogle Scholar
  4. D. Baeriswyl, G. Harbeke, H. Kiess, and W. Meyer, Chapter 7 in Electronic Properties of Polymers, eds. J. Mort and G. Pfister (Wiley, 1982 ).Google Scholar
  5. 2.
    A. Kotani, J. Phys. Soc. Japan 42, 408 and 416 (1977).Google Scholar
  6. 3.
    S. A. Brazovskii, JETP Lett. 28, 606 (1978) (trans. of Pisma ZhETF 28, 656 (1978))Google Scholar
  7. S. A. Brazovskii, Sov. Phys. JETP 51, 342 (1980) (trans. of ZhETF 78, 677 (1980)).Google Scholar
  8. 4.
    M. J. Rice, Phys. Lett. 71A, 152 (1979)CrossRefGoogle Scholar
  9. M. J. Rice and J. Timonen, Phys. Lett. 73A, 368 (1978)Google Scholar
  10. T.E.J. Mele and M. J. Rice, Chemica Scripta 17, 21 (1981)Google Scholar
  11. 5.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979)CrossRefGoogle Scholar
  12. W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. B22, 2099 (1980).Google Scholar
  13. 6.
    H. Takayama, Y. R. Lin-Liu, and K. Maki, Phys. Rev. B 21, 2388 (1980)CrossRefGoogle Scholar
  14. J. A. Krumhansl, B. Horovitz, and A. J. Heeger, Solid State Commun. 34, 945 (1980)CrossRefGoogle Scholar
  15. B. Horovitz, Solid State Commun. 34, 61 (1980)CrossRefGoogle Scholar
  16. B. Horovitz, Phys. Rev. Lett. 46, 742 (1981).CrossRefGoogle Scholar
  17. 7.
    D. K. Campbell and A. R. Bishop, Phys. Rev. B24, 4859 (1981)Google Scholar
  18. D. K. Campbell and A. R. Bishop, Nuc. Phys. B200, 297 (1982).CrossRefGoogle Scholar
  19. 8.
    D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).CrossRefGoogle Scholar
  20. 9.
    R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev. D 12, 2443 (1975).CrossRefGoogle Scholar
  21. 10.
    J. E. Hirsch and E. Fradkin, Phys. Rev. Lett. 49 402 (1982)CrossRefGoogle Scholar
  22. J. E. Hirsch and E. Fradkin, Phys. Rev. B 27, 1680 and 4302 (1983).Google Scholar
  23. 11.
    S. Mazumdar and S. N. Dixit, Phys. Rev. Lett. 51, 292 (1983)CrossRefGoogle Scholar
  24. S. Mazumdar and S. N. Dixit, Phys. Rev. B29, (1984).Google Scholar
  25. 12.
    J. E. Hirsch, Phys. Rev. Lett. 51, 296 (1983).CrossRefGoogle Scholar
  26. 13.
    J. E. Hirsch and M. Grabowski, Phys. Rev. Lett. 52, 1713 (1984).CrossRefGoogle Scholar
  27. 14.
    D. K. Campbell, T. A. DeGrand and S. Mazumdar, Phys. Rev. Lett. 52, 1717 (1984).CrossRefGoogle Scholar
  28. 15.
    R. E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955) p. 108Google Scholar
  29. D. Allender, J. W. Bray, and J. Boudreau, Phys. Rev. B 9, 119 (1974).CrossRefGoogle Scholar
  30. 16.
    S. Coleman and E. Weinberg, Phys. Rev. D 7, 1888 (1973).CrossRefGoogle Scholar
  31. 17.
    D. J. Gross and F. Wilzcek, Phys. Rev. Lett. 30, 1343 (1973)CrossRefGoogle Scholar
  32. D. J. Gross and F. Wilzcek, Phys. Rev. D 8, 3633 (1973)CrossRefGoogle Scholar
  33. H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).CrossRefGoogle Scholar
  34. 18.
    M. J. Rice, A. R. Bishop, and D. K. Campbell, Phys. Rev. Lett. 51, 2136Google Scholar
  35. 19.
    M. J. Rice and E. J. Mele, Phys. Rev. B25, 1339 (1982).Google Scholar
  36. 20.
    S. Kívelson and J. R. Schrieffer, Phys. Rev. B25, 6447 (1982).Google Scholar
  37. 21.
    R. Jackiw and C. Rebbi, Phys. Rev. D13, 3398 (1976)Google Scholar
  38. R. Jackiw and Schrieffer, Nuc. Phys. B190 253 (1981)Google Scholar
  39. W. P. Su and J. Schrieffer, Phys. Rev. Lett. 46, 738 (1981).CrossRefGoogle Scholar
  40. 22.
    W. P. Su and J. R. Schrieffer, Proc. Nat. Acad. Sci. 77, 5526 (Physics) (1980).Google Scholar
  41. 23.
    S. A. Brazovskii and N. N. Kirova, JETP Lett. 33, 4 (1981) (trans. of Pisma ZhETF 33, 6 (1981)).Google Scholar
  42. 24.
    I. V. Krive and A. S. Razhayskii, JETP Lett. 31, 610 (1981) (trans. of Pisma ZhETF 31, 647 (1980)).Google Scholar
  43. 25.
    J. L. Bredas, R. R. Chance, and R. Silbey, Mol. Cryst. Liq. Cryst. 77, 319 (1981).CrossRefGoogle Scholar
  44. 26.
    M. J. Rice, Phys. Rev. Lett. 37, 36 (1976)CrossRefGoogle Scholar
  45. 27.
    A.R. Bishop and D. K. Campbell: Present and Future, eds. A. R. Bishop, D. K. Campbell, and B. Nicolaenko (North Holland, 1982 ) p. 195.Google Scholar
  46. 28.
    I. V. Krive and A. S. Rozhayskii, Sov. J. Low Temp. Phys. 7, 449 (1981) (trans. of Fiz. Nizk. Temp. 7, 921 (1981)).Google Scholar
  47. 29.
    J. C. Scott, J.-L. Bredas, J. M. Kaufman, P. Pfluger, G. B. Street, and K. Yakushi, contribution to Abano Terme Proceedings, ref. 1.Google Scholar
  48. 30.
    J. H. Kaufman, G. B. Street, J. C. Scott, N. Colaneri, T.-C. Chung, A. J. Heeger, and F. Wudl, contribution to Abano Terme Proceedings, ref. 1.Google Scholar
  49. 31.
    M. J. Rice and E. J. Mele, Phys. Rev. Lett. 49, 1455 (1982).CrossRefGoogle Scholar
  50. 32.
    D. K. Campbell, Phys. Rev. Lett. 50, 865 (1983).CrossRefGoogle Scholar
  51. 33.
    D. K. Campbell, T. A. DeGrand, and S. Mazumdar, to be published.Google Scholar
  52. 34.
    W. P. Su, Solid State Commun. 35, 899 (1980).CrossRefGoogle Scholar
  53. 35.
    A. R. Bishop, D. K. Campbell, P. S. Lomdahl, B. Horovitz, and S. R. Phillpot, Phys. Rev. Lett. 52, 671 (1984).CrossRefGoogle Scholar
  54. 36.
    F. Guinea, to be published.Google Scholar
  55. 37.
    Z. G. Soos and S. Ramasesha, Phys. Rev. Lett. 51, 2374 (1983)CrossRefGoogle Scholar
  56. Z. G. Soos and S. Ramasesha, J. Chem. Phys., to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • David K. Campbell
    • 1
  1. 1.Center for Nonlinear Studies and Theoretical DivisionLos Alamos National Lab.Los AlamosUSA

Personalised recommendations