Advertisement

Exact Solutions of Two-Dimensional Vortex Systems in Statistical Equilibrium

  • H. H. Chen
  • A. C. Ting
  • Y. C. Lee
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)

Abstract

Statistical equilibrium states of two-dimensional vortex systems [1] are described by the solutions of a nonlinear elliptic partial differential equation, the sinh-Poisson equation ∇2 ø + λ2 sinh = ø, with (ø = 0 on a rectangular boundary. We present here the first general analytic solutions to such a nonlinear boundary value problem. Some of these solutions were obtained previously only through numerical means. Explicit solutions showing nonlinear superposition are displayed.

Keywords

Imaginary Axis Elliptic Partial Differential Equation Statistical Equilibrium State General Analytic Solution Mirror Image Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Onsager, Nuovo Cimento Suppl. 6, 279 (1949).CrossRefGoogle Scholar
  2. C. C. Lin, Proc. Nat. Acad. Sci. USA 27, 570 (1941).CrossRefGoogle Scholar
  3. 2.
    G. Joyce, D. Montgomery, J. Plasma Phys. 10, Pt. 1, 107–121 (1973)CrossRefGoogle Scholar
  4. 3.
    D. Montgomery, G. Joyce, Phys. Fluids, 17, 1139–1145 (1974)CrossRefGoogle Scholar
  5. 4.
    Y.B. Pointin, T.S. Lundgren, Phys. Fluids 19, 1459–1470 (1976)CrossRefGoogle Scholar
  6. 5.
    D.L. Book, S. Fisher, B.E. McDonald, Phys. Rev. Lett. 34, 4–8 (1975)CrossRefGoogle Scholar
  7. 6.
    M.G. Forest, D.W. McLaughlin, J. Math Phys. 23, 1248–1277 (1982)CrossRefGoogle Scholar
  8. 7.
    V.O. Kozel, V.P. Kotlyrarov, Dokl. A. N. Ukr. SSR, Ser. A 10, 878–881 (1976)Google Scholar
  9. 8.
    M.J. Ablowitz, D.J. Kaup, A.C. Newell, H. Segur, Stud. Appl. Math., 53, 249–315 (1974)Google Scholar
  10. 9.
    For application of Riemann complex theory to periodic problems, see Theory of Nonlinear Lattices, by Morikazu Toda, Springer Verlag (1981)Google Scholar
  11. 10.
    J. Zagrodzinski, J. Math. Phys. 24, 46–52 (1983)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. H. Chen
    • 1
  • A. C. Ting
    • 1
  • Y. C. Lee
    • 1
  1. 1.Laboratory for Plasma and Fusion Energy StudiesUniversity of MarylandCollege ParkUSA

Personalised recommendations