Advertisement

Classical Statistical Mechanics of Integrable Systems

  • Nikos Theodorakopoulos
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)

Abstract

The aim of this contribution is to present a brief account of recent developments in the area of soliton thermodynamics, which demonstrate the validity of the soliton paradigm [1] in a statistical-mechanical context and establish a link between three seemingly disparate lines of nonlinear development: Inverse scattering theory (IST), transfer integral (TI) method and the Bethe Ansatz (RA).

Keywords

Classical Limit Toda Lattice Spatial Shift Transfer Integral Soliton Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.A. Krumhansl: in “Solitons and Condensed Matter Physics”, A.R. Bishop and T. Schneider (Eds.), Springer, Berlin 1978Google Scholar
  2. 2.
    e.g. as reviewed by R.K. Bullough and R.K. flood in Ref. 1 a recent review is given by M. Steiner: J. Magn. Magn. Mater 31–34, 1277 (1983)Google Scholar
  3. 4.
    J.A. Krumhansl and J.R. Schrieffer: Phys. Rev. B 11, 3535 (1975)CrossRefGoogle Scholar
  4. 5.
    J.F. Currie, J.A. Krumhansl, A.R. Bishop and S.F. Trullinner: Phys. Rev. R 22, 477 (1980)Google Scholar
  5. 6.
    TIT Theodorakopoulos: Z. Phys. B 46, 367 (1982)CrossRefGoogle Scholar
  6. 7.
    N. Theodorakopoulos: Phys. Rev. l30, (1984)Google Scholar
  7. 8.
    H.B. Thacker, Rev. Mod. Phys. 53, 3 (1981)CrossRefGoogle Scholar
  8. 9.
    M. Fowler and X. Zotos: Phys. TTev. B 25, 5806 (1982)Google Scholar
  9. 10.
    S.G. Chung: Phys. Lett. 89A, 363 (1982TGoogle Scholar
  10. 11.
    M. Imada, K. Hida and M. Tsthikawa: J. Phys. C 16, 35 (1983)CrossRefGoogle Scholar
  11. 12.
    N. Theodorakopoulos: Phys. Rev. Lett. 53, 871 1T984)Google Scholar
  12. 13.
    M. Toda: Theory of Nonlinear Lattices Tpringer, Berlin 1981 )Google Scholar
  13. 14.
    N. Gupta and B. Slither-land: Phys. Rev. A 14, 1790 (1976)CrossRefGoogle Scholar
  14. J. Meixner and F.W. Schäfke: Mathieusche Fúnktionen and Sphäroidfunktionen ( Springer, Berlin 1954 )Google Scholar
  15. 15.
    B. Sutherland: Rocky Mountain J. Math. 8, 413 (1978)Google Scholar
  16. 16.
    E.H. Lieb and W. Liniger: Phys. Rev. 131, 1605 (1963), E.H. Lieb, ibid., 1615 (1963)Google Scholar
  17. 17.
    N. Theodoracó öulos, to be publishedGoogle Scholar
  18. 18.
    C.N. Yang and C.P. Yang, J. Math. Phys. 10, 1115 (1969)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Nikos Theodorakopoulos
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart 80Fed. Rep. of Germany

Personalised recommendations