Solitons in the Quantum Toda Lattice

  • Franz G. Mertens
  • Manfred Hader
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)


One-dimensional quantum systems with continuous variables were treated exactly by Bethe’s ansatz beginning with the work of LIEB and LINIGER [1] and YANG and YANG [2] on the Bose gas with repulsive delta-function interactions. SUTHERLAND [3] generalized the method to other integrable systems, where Bethe’s ansatz does not give the exact but only the asymptotic wave functions; however, this is sufficient to obtain the ground state energy and the excitation spectrum.


Ground State Energy Quantum Fluctuation Hole Excitation Zero Point Motion Classical Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.H. Lieb, W. Liniger: Phys. Rev. 130, 1605 (1963) E.H. Lieb: Phys. Rev. 130, 1616 (1963)Google Scholar
  2. 2.
    C.N. Yang, C.P. Yang: J. Math. Phys. 10, 1115 (1969)CrossRefGoogle Scholar
  3. 3.
    B. Sutherland: J. Math. Phys. 12, 246, 251 (1971)CrossRefGoogle Scholar
  4. 4.
    B. Sutherland: Rocky Mount. J. of Math. 8, 413 (1978)CrossRefGoogle Scholar
  5. 5.
    F.G. Mertens: Z. Physik B 55, 353 (1984)CrossRefGoogle Scholar
  6. 6.
    F.G. Mertens, H. Büttner: EPS Conf., Antwerpen (1980), Europhys. Conf. Abstr. 3G, 46 (1980)Google Scholar
  7. 7.
    F.G. Mertens, W. Biem: J. Low Temp. Phys. 24, 379 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • Franz G. Mertens
    • 1
  • Manfred Hader
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthFed. Rep. of Germany

Personalised recommendations