Advertisement

Yang-Baxter Algebras and Integrable Models in Field Theory and Statistical Mechanics

  • H. J. de Vega
Conference paper
Part of the Springer Series in Synergetics book series (SSSYN, volume 30)

Abstract

The investigation of two-dimensional classical and quantum theories has shown in recent years that the Yang-Baxter equations and the Yang-Baxter algebras are the basic concepts of integrability. In statistical models and field theories the commutativity of transfer matrices t(λ) at different values of the spectral parameter follows directly from the Yang-Baxter algebra. The expansion in powers of λ of log t(λ) (or t(λ)) provides an infinite number of commuting operators including the Hamiltonian. So, we can say that the theory is integrable since there are as many commuting operators as degrees of freedom (infinity). More precisely, one associates in many theories a local transition matrix Ln(λ) and the monodromy operator \(T\left( \lambda \right) = {\overleftarrow \Pi _n}{L_n}\left( \lambda \right)\), the trace of which is the transfer matrix t(λ). In an integrable theory T(λ) verifies the Yang-Baxter algebra.

Keywords

Poisson Bracket Monodromy Matrix Monodromy Operator Integrable Statistical Model Commute Transfer Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for reviews L.D. Faddeev, Les Houches lectures 1982, Saclay preprint T-82–76.Google Scholar
  2. P.P. Kulish and E.K. Sklyanin, in Tvärminne Lectures, Springer Lectures in Physics vol. 151 (1982).Google Scholar
  3. H. Thacker, Revs. Mods. Physics 53, 253 (1981).CrossRefGoogle Scholar
  4. 2.
    H.J. de Vega, H. Eichenherr and J.M. Maillet, Phys. Lett. 132B, 337 (1983).Google Scholar
  5. 3.
    A.V. Mikhailov and V.E. Zakharov, JETP 47, 1017 (1978). H. Eichenherr and M. Forger, Nucl. Phys 8155, 381 (1979).Google Scholar
  6. 4.
    M. Löscher and K. Pohlmeyer, Nucl. Phys. B137, 46 (1978).CrossRefGoogle Scholar
  7. 5.
    H.J. de Vega, Phys. Lett. 87B, 233 (1979).Google Scholar
  8. 6.
    H.J. de Vega, H. Eichenherr and J.M. Maillet, Comm. Math. Phys. 92, 507 (1984).CrossRefGoogle Scholar
  9. 7.
    H.J. de Vega, H. Eichenherr and J.M. Maillet, Nucl. Phys. B (to appear).Google Scholar
  10. 8.
    Al.B. Zamolodchikov, Dubna preprint E2, 11485 (1978).Google Scholar
  11. 9.
    A.B. Zamolodchikov and A1.B. Zamolodchikov, Ann. Phys. 120, 253 (1979).CrossRefGoogle Scholar
  12. 10.
    H.J. de Vega, Nucl. Phys. B (to appear); LPTHE Paris preprint 84/2.Google Scholar
  13. 11.
    R.J. Baxter, Studies in Appl. Math. L51 (1971).Google Scholar
  14. 12.
    See for example, H.J. de Vega and H.O. Girotti, Nucl. Phys. B79, 77 (1974).CrossRefGoogle Scholar
  15. 13.
    E. Witten, Comm. Math. Phys. 92, 455 (1984).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1985

Authors and Affiliations

  • H. J. de Vega
    • 1
  1. 1.LPTHE, Tour 16, 1e-étageUniv. P. et M. CurieParisFrance

Personalised recommendations