Advertisement

Diffusion Technology

  • M. Kubát

Abstract

A separate chapter is devoted to diffusion technology because of its fundamental importance. First, the importance of diffusion technology for semiconductor devices is considered and the basic underlying equations are introduced; the solution to these equations leads (under certain boundary conditions) to the error function. A number of practical examples is given where the diffusion of impurities into the semiconductor is solved using the error function. Some further examples are introduced using a course other than the error function. Calculations are made of the breakdown voltage of the pn junction fabricated by diffusion technology, and the dependence of breakdown voltage on the diffusion process parameters is derived. Technological equipment is described and the roles of the surface concentration of impurities and the diffusion coefficient are analysed.

Keywords

Surface Concentration Breakdown Voltage Impurity Concentration Semiconductor Surface Diffusion Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 9.1
    W. R. Runyan: Technology Semiconductor Silicon ( McGraw-Hill, New York 1965 )Google Scholar
  2. 9.2
    A. M. Smith: “Integrated Silicon Device Technology, Vol. IV. Diffusion”, Technical Documentary Report No. ASD-TDR-63–316. Research Triangle Institute, Durham (1974)Google Scholar
  3. 9.3
    P. F. Kane, G. B. Larrabee: Characterization of Semiconductor Materials ( McGraw-Hill, New York 1970 )Google Scholar
  4. 9.4
    J. Martin, E. Hass. K. Raithel: Radiochemische Untersuchungen zur Diffusion von Gold in Silizium. Solid-State Electron. 9, 83 (1966)CrossRefGoogle Scholar
  5. 9.5
    W. M. Bullis: Properties of gold in silicon. Solid-State Electron. 9, 143 (1966)CrossRefGoogle Scholar
  6. 9.6
    G. J. Sprokel: Interstitial-substitutional diffusion in a finite medium, gold into silicon. J. Electrochem.Soc. 112, 807 (1965)CrossRefGoogle Scholar
  7. 9.7
    F. C. Frank, D. Turnbull: Mechanism of diffusion of Cu in Ge. Phys. Rev. 104 617 (1956)CrossRefGoogle Scholar
  8. 9.8
    H. S. Veloric, M. B. Prince, M. J. Eder: Avalanche breakdown voltage in silicon diffused p-njunctions as a function of impurity gradient. Appl. Phys. 27, 895 (1956)CrossRefGoogle Scholar
  9. 9.9
    J. Koutný. I. Kudlák. J. mikušek: Technologia seriové výroby tranzistorů a polovodičových diod.(Batch Production Technology of Transistors and Semiconductor Diodes) ( SNTL, Prague 1964 )Google Scholar
  10. 9.10
    A. I. Kurnosov, V. V. Judin: Technologia proizvodstva poluprovodnikovykh priborov. (Production Technology of Semiconductor Devices) (Izd. Vysshaya shkola, Moscow 1974 )Google Scholar
  11. 9.11
    B. I. Boltaks: Diffuzia i tochechnye defekty v poluprovodnikakh. (Diffusion and Spot Defects in Semiconductors) (Izd. Nauka, Leningrad 1972 )Google Scholar
  12. 9.12
    J. F. Lambert: Einstellung der Trägerlebensdauer in Thyristor-strukturen. E. Kleine Lebensdauer.Wiss. Ber. AEG 45, 153 (1972)Google Scholar
  13. 9.13
    Chin Ghosh: Diffusion model for arsenic in silicon. IBM J. Res. Dev. 11, 472 (1971)Google Scholar
  14. 9.14
    R. B. Fair, G. R. Weber: Effect of complex formation on diffusion of arsenic in silicon. J. Appl.Phys. 44, 273 (1973)CrossRefGoogle Scholar

Copyright information

© Prof. Ing. Milan Kubát, Dr. Sc. 1984

Authors and Affiliations

  • M. Kubát
    • 1
  1. 1.Department of MicroelectronicsTechnical University of PraguePrague 6Czechoslovakia

Personalised recommendations