Advertisement

Relationship Between Initial Physical-Technological Parameters and Final Electrical Parameters of Thyristors

  • M. Kubát

Abstract

This chapter contains a summary of the properties of the four-layer pnpn structure using the information explained in the previous chapters. It shows the physical, technological, and design conditions for obtaining high reverse and breakover voltage, high load possibilities for forward current, good dynamic properties of turning off, and a high capability to resist dU D/dt and dI T/dt. It also covers the influence of temperature. Finally, this chapter gives the basic relations between the resulting (electrical) parameters of thyristors on the one hand and the underlying physical and design parameters of thyristors on the other hand.

Keywords

Breakdown Voltage Minority Carrier Depletion Region Final Parameter Auger Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    E. Spenke: Some problems in the physics of power rectifiers and thyristors. Festkörperprobleme 7, 108 (1967)Google Scholar
  2. 6.2
    A. Herlet: The maximum blocking capability of silicon thyristors. Solid-State Electron. 8, 655 (1965)CrossRefGoogle Scholar
  3. 6.3
    G. Köhl: Über die Bemessung hochsperrender Thyristoren. Elektrotech. A 89, 131 (1968)Google Scholar
  4. 6.4
    W. Mönch: Zur Durchbruchspannung diffundierter p.-n Übergänge in Silizium. Solid-State Electron. 10, 1085 (1967)CrossRefGoogle Scholar
  5. 6.5
    O. Valèik: High-Voltage Thyristors, Technical Reports of CKD—Praha, Prague (1973)Google Scholar
  6. 6.6
    A. Herlet, K. Raithel: Forward characteristics of thyristors in the fired state. Solid-State Electron. 9, 1089 (1966)CrossRefGoogle Scholar
  7. 6.7
    A. Herlet: The forward characteristic of silicon power rectifiers at high current densities. Solid-State Electron. 11, 717 (1968)CrossRefGoogle Scholar
  8. 6.8
    A. Herlet: Bemessung von Siliziumstromtoren für verschiedenstige Anwendungsgebiete. Siemens 11, 843 (1964)Google Scholar
  9. 6.9
    S. C. Choo: Effect of Carrier Lifetime on the Forward Characteristics of High-Power Devices. IEEE Trans. ED-17, 647 (1970)Google Scholar
  10. 6.10
    A. Herlet: Bestimmung der Diffusionslänge L und der Inversionsdichte ni aus den Durchlasskennlinien von legierten Silizium-Flächengleichrichtern. Z. Angew. Phys. 9, 155 (1957)Google Scholar
  11. 6.11
    A. Hoffmann, K. Schuster: An experimental determination of the carrier lifetime in p-i-n diodes from the stored carrier charge. Solid-State Electron. 7, 717 (1964)CrossRefGoogle Scholar
  12. 6.12
    K. Schuster: Determination of the lifetime from the stored carrier charge in diffused psn rectifiers.Solid-State Electron. 8, 427 (1965)Google Scholar
  13. 6.13
    R. A. Kokosa: The potential and carrier distributions of a p-n-p-n device in the on state. Proc.IEEE 55, 1389 (1967)CrossRefGoogle Scholar
  14. 6.14
    J. Krausse: Messung der Ladungsträger-Konzentrationsverteilung im Mittelgebiet eines legierten Silizium - psn - Gleichrichters bei Belastung in Durchlassrichtung. Solid-State Electron. 15, 841 (1972)Google Scholar
  15. 6.15
    H. Schlangenotto, W. Gerlach: On the effective carrier lifetime in p-s-n rectifiers at high injection levels. Solid-State Electron. 12,267 (1969)Google Scholar
  16. 6.16
    E. Spenke: Notes on the theory of the forward characteristic of power rectifiers. Solid-State Electron. 11,1119 (1968)Google Scholar
  17. 6.17
    F. Dannhäuser: Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger - I. Solid-State Electron. 15, 1371 (1972)CrossRefGoogle Scholar
  18. 6.18
    J. Krausse: Die Abhängigkeit der Trägerbeweglichkeit in Silizium von der Konzentration der freien Ladungsträger - II. Solid-State Electron. 15, 1377 (1972)CrossRefGoogle Scholar
  19. 6.19
    J. Krausse: Auger-Rekombination im Mittelgebiet durchlassbelasteter Silizium-Gleichrichter und Thyristoren. Solid-State Electron. 17, 427 (1974)CrossRefGoogle Scholar
  20. 6.20
    N. G. Nilson, K. G. Svantesson: The spectrum and decay of the recombination radiation from strongly excited silicon. Solid State Commun. 11,155 (1972)Google Scholar
  21. 6.21
    J. D. Beck, R. Conradt: Auger-Rekombination in Si. Solid State Commun, 13, 93 (1973)Google Scholar
  22. 6.22
    J. Burtscher, F. Dannhäuser, J. Krausse: Die Rekombination in Thyristoren und Gleichrichtern aus Silizium: ihr Einfluss auf die Durchlasskennlinie und das Freiwerdezeitverhalten. Solid-State Electron. 18 ,35 (1975)Google Scholar
  23. 6.23
    R. A. Kokosa, B. R. Tuft: A high-voltage, high-temperature reverse conducting thyristor. IEEE Trans. ED-17 ,667 (1970)Google Scholar
  24. 6.24
    O. Valčík: Spínací proces tyristoru. (The Turn-on Process in a Thyristor), PhD Thesis, Prague (1971) M. Kubât: The perspectives of semiconductor power devices. Elektrotech. Obz. 63 ,450 (1974) (in Czech)Google Scholar
  25. 6.25
    M. Kubát: The perspectives of semiconductor power devices. Elektrotech. Obz. 63, 450 (1974) (in Czech)Google Scholar

Copyright information

© Prof. Ing. Milan Kubát, Dr. Sc. 1984

Authors and Affiliations

  • M. Kubát
    • 1
  1. 1.Department of MicroelectronicsTechnical University of PraguePrague 6Czechoslovakia

Personalised recommendations