Skip to main content

Abstract

If the typical temperature difference in a gas flow is an appreciable fraction of the absolute temperature, the typical density difference will be an appreciable fraction of the absolute density, and the density appearing in the velocity-field equations can no longer be taken as constant. Instead, as in the buoyant flows of Chapter 9, the momentum and energy equations must be solved simultaneously since they are “coupled,” i.e., density appears in the momentum equation and is linked through an equation of state to the dependent variable of the energy equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Illingworth, C. R.: Steady flow in the laminar boundary layer of a gas. Proc. Roy. Soc. A199: 533 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Stewartson, K.: Correlated compressible and incompressible boundary layers. Proc. Roy. Soc. A200: 84 (1949).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Liepmann, H. W. and Roshko, A.: Elements of Gas Dynamics, Wiley, New York, 1957.

    Google Scholar 

  4. Seddon, J.: The flow produced by interaction of a turbulent boundary layer with a normal shock wave of sufficient strength to cause separation. Aero Res. Council RandM 3502 (London), 1960.

    Google Scholar 

  5. Oswatitsch, K. and Wieghardt, K.: Theoretical investigations on steady potential flows and boundary layers at high speed. Aero Res. Council Rep. 10356 (London), 1946.

    Google Scholar 

  6. Lighthill, M. J.: On boundary layers and upstream influence. II. Supersonic flows without separation. Proc. Roy. Soc. A217: 478 (1953).

    Article  ADS  Google Scholar 

  7. Stewartson, K.: Multistructured boundary layers on flat plates and related bodies. Adv. Appl. Mech. 14: 145 (1974).

    Article  ADS  Google Scholar 

  8. Smith, F. T.: On the high Reynolds number theory of laminar flows. IMA J. Appl. Math. 28: 207 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Chapman, D. R., Kuehn, D. M., and Larson H. K.: Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Rep. 1356, 1958.

    Google Scholar 

  10. Carter, J. E.: Numerical solution of the Navier—Stokes equations for the supersonic laminar flow over a two-dimensional compression corner. NASA Rep. TR-R-385, 1972.

    Google Scholar 

  11. Werle, M. J. and Vatsa, V. N.: A new method for supersonic boundary-layer separation. AIAA J. 12: 1491 (1974).

    Article  ADS  MATH  Google Scholar 

  12. Lewis, J. E., Kubota, T., and Lees, L.: Experimental investigation of supersonic laminar two-dimensional boundary-layer separation in a compression corner with and without cooling. AIAA J. 6: 7–14 (1968).

    Article  ADS  Google Scholar 

  13. Reyhner, T. A. and Flügge-Lotz, I.: The interaction of a shock wave with a laminar boundary layer. Int. J. Non-Linear Mech. 3 (2): 173 (1968).

    Article  MATH  Google Scholar 

  14. Veldman, A. E. P.: A numerical method for the calculation of laminar incompressible boundary layers with strong-inviscid interaction. NLR TR 79023L, 1979.

    Google Scholar 

  15. Cebeci, T., Stewartson, K., and Williams, P. G.: Separation and reattachment near the leading edge of a thin airfoil at incidence. AGARD Symposium on Computation of Viscous-Inviscis Interaction Flows, Colorado Springs, 1980.

    Google Scholar 

  16. Cebeci, T., and Schimke, S. M.: The calculation of separation bubbles in interactive turbulent boundary layers. J. Fluid Mech. 131: 305 (1983).

    Article  ADS  MATH  Google Scholar 

  17. LeBalleur, J. C.: Couplage visqueux-non visqueux: analyse du problème incluant décollements et ondes de choc. La Rech. Aèrosp. n° 1977–6, 349. English translation in ESA TT476, 1977.

    Google Scholar 

  18. LeBalleur, J. C.: Couplage visqueux-non visqueux: méthode numérique et applications aux écoulements bidimensionnels transsoniques et supersoniques. La Rech. Aèrosp. n° 1978–2, 67–76 English translation in ESA TT496, 1978.

    Google Scholar 

  19. Carter, J. and Womom, S. F.: Solutions for incompressible separated boundary layers encluding viscous-inviscid interaction in Aerodynamic Analysis Requiring Advanced Computers. NASA SP-347, 1975, p. 125.

    Google Scholar 

  20. Rott, N. J.: Compressible laminar boundary layer on a heat-insulated body. 332 Coupled Laminar Boundary Layers J. Aero. Sci. 20: 67 (1953).

    Google Scholar 

  21. Cohen, C. B. and Reshotko, E.: The compressible laminar boundary layer with heat transfer and arbitrary pressure gradient. NACA Rep. 1294, 1956.

    Google Scholar 

  22. Monaghan, R. J.: Effects of heat transfer on laminar boundary-layer development under pressure gradients in compressible flow. Aero Res. Council RandM 3218, 1961. (Contains results of unpublished work by Monaghan and Crabtree.)

    Google Scholar 

  23. Stewartson, K.: On supersonic laminar boundary layers near convex corners. Proc. Roy. Soc. A319: 289 (1970).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cebeci, T., Bradshaw, P. (1984). Coupled Laminar Boundary Layers. In: Physical and Computational Aspects of Convective Heat Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02411-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02411-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02413-3

  • Online ISBN: 978-3-662-02411-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics