Advertisement

Activation Energy for Hopping Conduction

  • Boris I. Shklovskii
  • Alex L. Efros
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 45)

Abstract

In this chapter we shall be using the percolation method to calculate the activation energy є 3 for hopping conduction. The simplest and most accurate solution for this problem is available in the case of low compensation (Sect. 8.1). For this case we shall give a detailed comparison of the theory with experimental data. Behavior of the activation energies є 1 and є 3 in the limit of K → 1 is discussed in Sect. 8.2. As K → 1, both energies increase because of the lowering of the Fermi level into the forbidden gap (cf. Sect. 3.4). Section 8.3 develops a perturbation method for percolation theory and proves that in a lightly doped semiconductor the activation energy є 3 is independent of the temperature at any degree of compensation. The perturbation theory recipe is then used to calculate the activation energy for an isoelectronic solid solution of different semiconductors — when the main contribution to the impurity level scatter results not from the Coulomb interaction but from fluctuations in the composition of the solution within the volume of an impurity state.

Keywords

Activation Energy Fermi Level Percolation Threshold Percolation Theory Potential Energy Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    B. I. Shklovskii, I. S. Shlimak: Hopping conduction in germanium. Fiz. Tekh. Poluprov. 6, 129 (1972)Google Scholar
  2. B. I. Shklovskii, I. S. Shlimak: English transl. Soy. Phys.—Semicond. 6, 104 (1972)Google Scholar
  3. 8.2
    H. Fritzsche: Electrical properties of germanium semiconductors at low temperatures. Phys. Rev. 99, 406 (1955)CrossRefGoogle Scholar
  4. 8.3
    H. Fritzsche: Resistivity and Hall coefficient of antimony doped germanium at low temperatures. J. Phys. Chem. Solids 6, 69 (1958)ADSCrossRefGoogle Scholar
  5. 8.4
    J. Chroboczek, E. W. Prohofcky, R. J. Sladek: Magnetically induced spin-reversal transitions in impurity hop conduction in n-type germanium. Phys. Rev. 169, 593 (1968)CrossRefGoogle Scholar
  6. 8.5
    H. Scher, M. Lax: Stoichastic transport in a disordered solid. II. Impurity conduction. Phys. Rev. B7, 4502 (1973)MathSciNetGoogle Scholar
  7. 8.6
    M. Pollak, T. H. Geballe: Low-frequency conductivity due to hopping processes in silicon. Phys. Rev. 122, 1742 (1961)CrossRefGoogle Scholar
  8. 8.7
    M. Pollak, M. L. Knotek: Evidence for correlated hopping in impurity concentrations. Solid State Commun. 21, 183 (1977)ADSCrossRefGoogle Scholar
  9. 8.8
    M. L. Knotek: High field magnetoresistance of hopping transport in the disordered impurity system of transmutation doped Ge. Phys. Rev. B16, 2629 (1977)Google Scholar
  10. 8.9
    M. Pollak: A theory of many-electron hopping rates. J. Phys. C14, 2977 (1981)ADSGoogle Scholar
  11. 8.10
    B. I. Shklovskii, I. Ya. Yanchev: Determination of degree of compensation of semiconductors from the saturation of hopping conduction. Fiz. Tekh. Poluprov. 6, 1616 (1972)Google Scholar
  12. B. I. Shklovskii, I. Ya. Yanchev: English trans. Sov. Phys.—Semicond. 6, 1398 (1972)Google Scholar
  13. 8.11
    I. S. Shlimak, V. V. Emtzev: Dependence of the activation energy of conductivity on the compensation degree in germanium. Phys. Stat. Sol. B47, 325 (1971)Google Scholar
  14. 8.12
    M. Cuevas: Mobility of electrons in compensated semiconductors. I. Experiment. Phys. Rev. 164, 1021 (1967)CrossRefGoogle Scholar
  15. 8.13
    E. M. Gershenzon, V. S. Ivleva, I. N. Kurilenko, L. B. Litvak-Gorskaya: Influence of compensation on electrical conduction in p-type InSb. Fiz. Tekh. Poluprov. 6, 1982 (1972)Google Scholar
  16. E. M. Gershenzon, V. S. Ivleva, I. N. Kurilenko, L. B. Litvak-Gorskaya: English trans. Sov. Phys.—Semicond. 6, 1695 (1972)Google Scholar
  17. 8.14
    B. L. Gel’mont, A. R. Gadzhiev, B. I. Shklovskii, I. S. Shlimak, A. L. Efros: Hopping conduction in germanium silicon solid solutions. Fiz. Tekh. Poluprov. 8, 2377 (1974)Google Scholar
  18. B. L. Gel’mont, A. R. Gadzhiev, B. I. Shklovskii, I. S. Shlimak, A. L. Efros: English trans. Sov. Phys.—Semicond. 8, 1549 (1974)Google Scholar
  19. 8.15
    K. J. Hayden, P. N. Butcher: Analysis of hopping conduction in impurity bands. Phil. Mag. B38, 603 (1978)Google Scholar
  20. 8.16
    Nguyen Van Lien, B. I. Shklovskii, A. L. Efros: Activation energy of hopping conduction in lightly doped semiconductors. Fiz. Tekh. Poluprov. 13, 2192 (1979)Google Scholar
  21. Nguyen Van Lien, B. I. Shklovskii, A. L. Efros: English transi. Sov. Phys.—Semicond. 13, 1281 (1979)Google Scholar
  22. 8.17
    E. I. Levin, Nguyen Van Lien, B. I. Shklovskii: The resistor network method in the theory of hopping conduction. Zh. Eksp. Theor. Fiz. 82, 1591 (1982)Google Scholar
  23. E. I. Levin, Nguyen Van Lien, B. I. Shklovskii: English transi. Sov. Phys.—JETP 55, 921 (1982)Google Scholar
  24. E. I. Levin, Nguyen Van Lien, B. I. Shklovskii: Hopping electrical conduction in strong electric fields: A numerical computer experiment. Fiz. Tekh. Poluprov. 16, 815 (1982)Google Scholar
  25. E. I. Levin, Nguyen Van Lien, B. I. Shklovskii: English transi. Soy. Phys. Semicond. 16, 523 (1982)Google Scholar
  26. 8.18
    Z. I. Alferov, E. L. Portnoy, A. A. Rogachev: Absorption edge width in solid semiconducting solutions. Fiz. Tekh. Poluprov. 2, 1194 (1968)Google Scholar
  27. Z. I. Alferov, E. L. Portnoy, A. A. Rogachev: English transi. Soy. Phys.—Semicond. 2, 706 (1968)Google Scholar
  28. 8.19
    I. S. Shlimak, A. L. Efros, I. Ya. Yanchev: Effect of composition fluctuations in Ge-Si solid solutions. Fiz. Tekh. Poluprov. 11, 257 (1977)Google Scholar
  29. I. S. Shlimak, A. L. Efros, I. Ya. Yanchev: English transi. Soy. Phys.Semicond. 11, 149 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Boris I. Shklovskii
    • 1
  • Alex L. Efros
    • 1
  1. 1.A.F. IOFFE Physico-Technical InstituteAcademy of Sciences of the USSRLeningradUSSR

Personalised recommendations