Advertisement

Understanding Oligotrophic Oceans : Can the Eastern Mediterranean be a Useful Model ?

  • T. Berman
  • Y. Azov
  • D. Townsend
Chapter
Part of the Lecture Notes on Coastal and Estuarine Studies book series (COASTAL, volume 8)

Abstract

This paper will pose some general questions concerning marine ecosystems in the light of major discoveries and observations in the past decade. More specifically we shall apply these to oligotrophic seas and present some preliminary data to support the suggestion that the Eastern Mediterranean Basin may serve as a convenient model for the study of such environments.

Keywords

Chlorophyll Concentration Secchi Depth Deep Chlorophyll Maximum Pelagic Water Photosynthetic Carbon Fixation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azam F (1983) Bacterioplankton secondary production and its regulation by environ mental factors. Proc. Workshop on Measurement of Microbial Activities in the Carbon Cycle in Aquatic Ecosystems. Plön (in press).Google Scholar
  2. Banse K (1982) Cell volumes, maximal growth rates of unicellular algae and ciliates, and the role of ciliates in the marine pelagial. Limnol. Oceanogr. 27(6) : 1059–1071.CrossRefGoogle Scholar
  3. Bell WH Land JM and Mitchell R (1974) Selective stimulation of marine bacteria by algal extracellular products. Limnol. Oceanogr.19: 833–839.CrossRefGoogle Scholar
  4. Capriulo GM and Carpenter EJ (1980) Grazing by 35 to 202 µm microzooplankton in Long Island Sound. Mar. Biol. 56 : 319–326.CrossRefGoogle Scholar
  5. Capriulo GM and Carpenter EJ (1983) Abundance, species composition, and feeding impact of tintinnid micro-zooplankton in Central Long Island Sound. Mar. Ecol. Prog. Ser.10 : 277–288.CrossRefGoogle Scholar
  6. Cullen JJ (1982) The deep chlorophyll maximum: comparing vertical profiles of chloro phyll a. Can. J. Fish Aqua. Sci. 39 : 791–803.CrossRefGoogle Scholar
  7. Eppley RW (1980) Estimating phytoplankton growth rates in the central oligotrophic oceans. In: Falkowski PG (ed.) Primary Productivity in the Sea. Plenum Press, New York, p. 231–242.CrossRefGoogle Scholar
  8. Fenchel T (1982) Ecology of heterotrophic microflagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8 : 225–231.CrossRefGoogle Scholar
  9. Gieskes WWC Kraay GL and Baars MA (1979) Current 14C methods for measuring primary production : gross underestimates in oceanic waters. Netherland J. Sea Res. 13: 50–78.Google Scholar
  10. Glover HE Phinney DA and Yentsch CS (1984) Photosynthetic characteristics of pico plankton compared with those of large phytoplànkton populations in various water masses in the Gulf of Maine. Biolog. Oceanogr. (in press).Google Scholar
  11. Holm-Hansen O Lorenzen CJ Holmes RW and Strickland JDH (1965) Fluorometric determinat ions of chlorophyll. J. Cons. Cons. Int. Explor. 30 : 3–15.Google Scholar
  12. Jewson DH Tailing JF Dring M Tilzer M Heaney I and Cunningham C (1984) Some problems caused by differences in spectral response and collecting properties of instruments. J. Plankton Res. (in press).Google Scholar
  13. Johnson PW and Sieburth McN (1979) Chroococcoide cyanbacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol. Oceanogr. 24 : 928–935.CrossRefGoogle Scholar
  14. Lehman JT and Scavia D (1982) Microscale patchiness of nutrients in plankton communit ies. Science 216 : 729–730.PubMedCrossRefGoogle Scholar
  15. Li WKW Subba Rao DV Harrison WG Smith JC Cullen JJ Irwin B and Platt T (1983) Auto trophic picoplankton in the tropical ocean. Science 219 : 292–295.PubMedCrossRefGoogle Scholar
  16. Lorenzen CJ (1966) A method for the continuous measurement of in vivo chlorophyll concentration. Deep Sea Res. 13: 223–227.Google Scholar
  17. McCarthy JJ and Goldman JC (1979) Nitrogenous nutrition of marine phytoplankton in nutrient-depleted waters. Science 203 : 670–672.PubMedCrossRefGoogle Scholar
  18. Megard RO Settles JR Bayer H and Combs WS (1980) Light, Secchi discs and trophic states. Limnol. Oceanogr. 25: 373–378.CrossRefGoogle Scholar
  19. Platt T Subba Rao DV and Erwin B (1983) Photosynthesis of picoplankton in the oligo trophic ocean. Nature 301 : 702–704.CrossRefGoogle Scholar
  20. Pomeroy LR (1980) Microbial roles in aquatic food webs. In: Colwell RR (ed.) Aquatic Microbial Ecology, University of Maryland. p. 85–109.Google Scholar
  21. Rassoulzadegan F and Etienne M (1981) Grazing rate of the tintinnid Stenosemella ventricosa (Clap. and Lachm.) Jorg, on the spectrum of the naturally occurring particulate matter from a Mediterranean neritic area. Limnol. Oceanogr. 26 : 258–270.CrossRefGoogle Scholar
  22. Sharp JH (1977) Excretion of organic matter by marine phytoplankton. Do healthy cells do it? Limnol. Oceanogr. 22 : 381–399.Google Scholar
  23. Sherr BF Sherr EB and Berman T (1982) Decomposition of organic detritus: A selective role for microflagellate protozoa. Limnol. Oceanogr. 27 : 765–769.CrossRefGoogle Scholar
  24. Sherr BF and Sherr EB (1983) Enumeration of heterotrophic microprotozoa by epifluoresc ence microscopy. Est. Coast. Shelf Sci. 16 : 1–7.CrossRefGoogle Scholar
  25. Sherr BF Sherr EB and Berman T (1983) Grazing, growth and ammonia excretion rates of a heterotrophic microflagellate fed four species of bacteria. Appl. Environ. Microbiol. 45 : 1196–1201.Google Scholar
  26. Sieburth JMcN and Davis PG (1982) The role of heterotrophic nanoplankton in the grazing and nurtur-ing of planktonic bacteria in the Sargasso and Caribbean Sea. Annales inst. Oceanogr. 58(5) : 285–296.Google Scholar
  27. Smith REH (1982) The estimation of phytoplankton production and excretion by carbon-14 Mar. Biol. Let. 3 : 325–334.Google Scholar
  28. Venrick EL (1982) Phytoplankton in an oligotrophic ocean: observations and questions. Ecol. Monographs. 52 : 129–154.CrossRefGoogle Scholar
  29. Waterbury JB Watson SW Guillard RRL and Brand LE (1979) Widespread occurrance of a unicellular marine planktonic cyanobacterium. Nature 277 : 293–294.CrossRefGoogle Scholar
  30. Williams PJLeB (1983) Bacterial production in the marine food chain: The Emperor’s new suit of clothes? In: Flows of energy and materials in marine ecosystems:Theory and Practice. NATO-ARI, Bombannes (in press).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • T. Berman
    • 1
  • Y. Azov
    • 1
  • D. Townsend
    • 2
  1. 1.Israel Oceanographic & Limnological Research Co.HaifaIsrael
  2. 2.Bigelow Laboratory for Ocean SciencesWest Boothbay HarborMaineUSA

Personalised recommendations