Fractions: Continued, Egyptian and Farey

  • Manfred R. Schroeder
Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Continued fractions are one of the most delightful and useful subjects of arithmetic, yet they have been continually neglected by our educational factions. Here we discuss their applications as approximating fractions for rational or irrational numbers and functions, their relations with measure theory (and deterministic chaos!), their use in electrical networks and in solving the “squared square;” and the Fibonacci and Lucas numbers and some of their endless applications.


Continue Fraction Electrical Network Irrational Number Fibonacci Number Golden Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    C. D. Olds: Continued Fractions (Random House, New York 1963 )Google Scholar
  2. 5.2
    H. S. Wall: Analytic Theory of Continued Fractions ( Van Nostrand, Princeton 1948 )MATHGoogle Scholar
  3. 5.3
    A. N. Khovanskii: The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory ( Noordhoff, Groningen 1963 )Google Scholar
  4. 5.4
    A. Y. Khinchin: Continued Fractions ( University of Chicago Press, Chicago 1964 )MATHGoogle Scholar
  5. 5.5
    C. J. Bouwkamp, A. J. Duijvestijn, P. Medema: Tables relating to simple squared rectangles (Dept. of Mathematics and Mechanics, Technische Hogeschool, Eindhoven 1960 )Google Scholar
  6. 5.6
    V. E. Hoggatt: Fibonacci and Lucas Numbers ( Houghton Mifflin, Boston 1969 )MATHGoogle Scholar
  7. 5.7
    P. H. Richter, R. Schranner: Leaf arrangement. Naturwissenschaften 65, 319–327 (1978)CrossRefGoogle Scholar
  8. 5.8
    M. Eigen: “Goethe und das Gestaltproblem in der modernen Biologie,” in H. Rössner (ed.): Rückblick in die Zukunft ( Severin und Siedler, Berlin 1981 )Google Scholar
  9. 5.9
    O. Ore: Number Theory and Its History ( McGraw-Hill, New York 1948 )MATHGoogle Scholar
  10. 5.10
    A. Koenig (personal communication)Google Scholar
  11. 5.11
    W. Gellert, H. Kästner, M. Hellwich, H. Kästner (eds.): The VNR Concise Encyclopedia of Mathematics ( Van Nostrand Reinhold, New York 1977 )Google Scholar
  12. 5.12
    L. K. Hua, Y. Wang: Applications of Number Theory to Numerical Analysis IX. (Springer, Berlin, Heidelberg, New York 1981 )Google Scholar
  13. 5.13
    J. C. Lagarias; A. M. Odlyzko: Solving “low-density” subset sum problems. (to be published)Google Scholar
  14. 5.14
    R. L. Graham (personal communication)Google Scholar
  15. 5.15
    R. K. Guy: Unsolved Problems in Intuitive Mathematics, Vol. I, Number Theory (Springer, Berlin, Heidelberg, New York 1981 )Google Scholar
  16. 5.16
    M. Gardner: Mathematical games. Sci. Am. 239,No. 4, 22–26 (1978)Google Scholar
  17. 5.17
    R. L. Graham: A theorem on partitions. J. Austral. Math. 4, 435–441 (1963)CrossRefGoogle Scholar
  18. 5.18
    E. Landau: Elementary Number Theory ( Chelsea, New York 1958 )MATHGoogle Scholar
  19. 5.19
    E. H. Neville: The Farey Series of Order 1025 ( Cambridge University Press, Cambridge 1950 )MATHGoogle Scholar
  20. 5.20
    C. M. Rader: Recovery of undersampled periodic waveforms. IEEE Trans. ASSP-25, 242–249 (1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Manfred R. Schroeder
    • 1
    • 2
  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenFed. Rep. of Germany
  2. 2.Acoustics Speech and Mechanics ResearchBell LaboratoriesMurray HillUSA

Personalised recommendations