Quadratic Residues

  • Manfred R. Schroeder
Part of the Springer Series in Information Sciences book series (SSINF, volume 7)


Here we will acquaint ourselves with the fundamentals of quadratic residues and some of their applications, and learn how to solve quadratic congruences (or perhaps see when there is no solution).


Radar Autocorrelation Sonar Fermat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 15.1
    G. H. Hardy, E. M. Wright: An Introduction to the Theory of Numbers, 4th ed. ( Clarendon, Oxford 1960 )MATHGoogle Scholar
  2. 15.2
    E. Jahnke, R. Emde: Tables of Functions ( Dover, New York 1945 )MATHGoogle Scholar
  3. 15.3
    M. Born, E. Wolf: Principles of Optics ( Pergamon, Oxford 1970 )Google Scholar
  4. 15.4
    M. R. Schroeder, R. E. Gerlach, A. Steingrube, H. W. Strube: Response to “Theory of Optimal Plane Diffusors. ” J. Acoust. Soc. Am. 66, 1647–1652 (1979)CrossRefGoogle Scholar
  5. 15.
    M. R. Schroeder: Constant-amplitude antenna arrays with beam patterns whose lobes have equal magnitudes. Archiv für Elektronik und Ubertragungstechnik (Electronics and Communication) 34,165–168 (1980) 314 ReferencesGoogle Scholar
  6. 15.6
    J. E. Mazo: Some theoretical observations on spread-spectrum communications. Bell Syst. Tech. J. 58, 2013–2023 (1979)MathSciNetGoogle Scholar
  7. 15.7
    I. F. Blake, J. W. Mark: A note on complex sequences with low correlations. IEEE Trans. IT-28, 814–816 (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Manfred R. Schroeder
    • 1
    • 2
  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenFed. Rep. of Germany
  2. 2.Acoustics Speech and Mechanics ResearchBell LaboratoriesMurray HillUSA

Personalised recommendations