Skip to main content

Diagnostic Demands in Clinical and Experimental Oncology: Application of Substrates Labeled with Positron-Emitting Radionuclides

  • Conference paper

Abstract

In recent years, new regimens for the treatment of a variety of malignant tumors have led to greatly increased disease-free survival rates. For example, the introduction of high-dose methotrexate (HDMTX) with citrovorum factor rescue by Jaffe (1) for osteogenic sarcoma was a major breakthrough in the treatment of that highly malignant bone tumor. Later, Jaffe et al. (2), Rosen et al. (3) and Sutow et al. (4) found that primary osteogenic sarcoma, and its systemic metastases, could be better controlled by using HDMTX in combination with other drugs such as doxorubicin (adriamycin) and cyclophosphamide (cytoxan). In 1976, Rosen and co-workers reported their results in a series of patients who were treated with HDMTX and adriamycin preoperatively in an attempt to control and shrink the primary tumor and to eradicate metastatic disease at an early point in the regimen. These patients were noted to have a better disease-free survival than patients treated with post-operative adjuvant chemotherapy (5). Recent regimens for osteogenic sarcoma and Ewing sarcoma have further increased the survival of patients with these diseases (6, 7, 8). Today, more than 80% of patients with osteogenic sarcoma can expect to survive 5 years following intensive chemotherapy (9), compared to less than 20% in 1970 (10).

Keywords

  • Osteogenic Sarcoma
  • Label Amino Acid
  • Embryonal Rhabdomyosarcoma
  • Primary Osteogenic Sarcoma
  • Mesenchymal Chondrosarcoma

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-662-02393-8_6
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-662-02393-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaffe N (1972) Recent advances in the chemotherapy of metastatic osteogenic sarcoma. Cancer 30; 1627–1631

    PubMed  CrossRef  CAS  Google Scholar 

  2. Jaffe N, Frei E, Traggis D, Cassady JR, Watts H, Fuller RM (1977) High dose methotrexate with citrovorum factor in osteogenic sarcoma–Progress Report Il. Cancer Treat Reports 61; 676–679

    Google Scholar 

  3. Rosen G, Tan C, Sanmaneechai A, Beattie EJ, Marcove R, Murphy ML (1975) The rationale for multiple drug chemotherapy in the treatment of osteogenic sarcoma. Cancer 35; 622–630

    PubMed  CrossRef  CAS  Google Scholar 

  4. Sutow WW, Sullivan MP, Fembach DJ (1975) Adjuvant chemotherapy in primary treatment of osteogenic sarcoma. Cancer 36; 1598–1602

    PubMed  CrossRef  CAS  Google Scholar 

  5. Rosen G, Murphy ML, Huvos AG, Guttieren M, Marcove RC (1976) Chemotherapy, en bloc resection and prosthetic bone replacement in the treatment of osteogenic sarcoma. Cancer 37; 1–1t

    PubMed  CrossRef  CAS  Google Scholar 

  6. Rosen G, Marcove RC, Caparros B, Nirenberg A, Kosloff C, Huvos AG (1979) Primary osteogenic sarcoma: the rationale for preoperative chemotherapy and delayed surgery. Cancer 43; 2163–2177

    PubMed  CrossRef  CAS  Google Scholar 

  7. Rosen G, Caparros B, Mosende C, McCormick B, Huvos AG, Marcove RC (1978) Curability of Ewing’s sarcoma and considerations for future therapeutic trials. Cancer 41; 888499

    Google Scholar 

  8. Rosen G (1978) Primary Ewing’s sarcoma: the multidisciplinary lesion. Intl Radiat Goal Biol Phys 4; 527–432

    Google Scholar 

  9. Rosen G, Nirenberg A, Juergen H, Caparros B, Huvos AG (1980) Response of primary osteogenic sarcoma to single agent therapy with high-dose methotrexate with citrovorum factor rescue. In: Nelson JD, Grassi C (eds) Current chemotherapy and infectious disease. Proceedings of the Eleventh International Congress of Chemotherapy and the Nineteenth Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington DC. American Society for Microbiology

    Google Scholar 

  10. Marcove RC, Mike V, Hajek JV, Levin AG, nutter RVP (1970) Gsteogenic sarcoma under the age of twenty-one. A review of one hundred and forty-five operative cases. J Bone Joint Surg [Am] 52; 411–423

    Google Scholar 

  11. Smith J, Heelan RT, Huvos AG, Caparrot B, Rosen G, Urmacher C, Caravelli JF (1982) Radiographic changes in primary osteogenic sarcoma following intensive chemotherapy. Radiological-pathological correlation in 63 patients. Radial 143; 355–360

    CAS  Google Scholar 

  12. Frankel RS, Jones AE, Cohen IA, Johnson KW, Johnston GS, Pomeroy TC (1974) Clinical correlations of Go-67 and skeletal whole-body radionuclide studies with radiography in Ewing’s sarcoma. Radial 110; 597 603

    Google Scholar 

  13. McKillop IH, Etcubanas E, Goris ML (1981) The indications for and limitations of bone scintigraphy in osteogenic sarcoma: a review of 55 patients. Cancer 48; 1133–1138

    PubMed  CrossRef  CAS  Google Scholar 

  14. Goldstein H, McNeil BJ, Zufall E, Treves S (1980) Is there still a place for bone scanning in Ewing’s sarcoma? I Nod Med 21; 10–12

    CAS  Google Scholar 

  15. Cohen MB, Spolter L, McDonald NS, Cassen B (1972) Enzymatic synthesis of N-13 L-glutamine. J Nucl Med 13; 422

    Google Scholar 

  16. Lembares N, Dinwoodie R, Gloria I, Harper P, Lathrop K (1972) A rapid enzymatic synthesis of 10-minute N-13-glutamate and its pancreatic localization. J Nucl Med 13; 786

    Google Scholar 

  17. Gelbard AS, Clarke LP, McDonald JM, Monahan WG, Tilbury RS, Kuo TYT, Laughlin JS (1975) Enzymatic synthesis and organ distribution studies with N13-labeled L-glutamine and L-glutamic acid. Radiol 116; 127–132

    CAS  Google Scholar 

  18. Laughlin JS, Weber DA, Kenny PJ, Corey KR, Greenberg E (1964) Total body scanning. BrJ Radiol 37; 287–296

    CrossRef  CAS  Google Scholar 

  19. Gelbard AS, Christie TR, Clarke LP, Laughlin JS (1977) Imaging of spontaneous cane tumors with ammonia and L-glutamine labeled with N-13. J Nucl Med 18; 718–723

    PubMed  CAS  Google Scholar 

  20. McDonald JM, Gelbard AS, Clarke LP, Christie TR, Laughlin JS (1976) Imaging of tumors involving bone with N-13-glutamic acid. Radiol 120; 623 626

    Google Scholar 

  21. Rosen G, Gelbard AS, Benua RS, Laughlin JS, Reiman RE, McDonald JM (1979) N-13 glutamate scanning to detect the early response of bone tumors to chemotherapy. Proc Am Assoc Cancer Res, March 1979; 189

    Google Scholar 

  22. Gelbard AS, Benua RS, Laughlin JS, Rosen G, Reiman RE, McDonald JM (1979) Quantitative scanning of osteogenic sarcoma with nitrogen-13-labeled L-glutamate. J Nucl Med 20; 782–784

    PubMed  CAS  Google Scholar 

  23. Reiman RE, Huvos AG, Benua RS, Rosen G, Gelbard AS, Laughlin JS (1981) Quotient imaging of N-13 L-glutamate in osteogenic sarcoma: correlation with tumor viability. Cancer 48; 1976–1981

    PubMed  CrossRef  CAS  Google Scholar 

  24. Reiman RE, Rosen G, Gelbard AS, Benno RS, Laughlin JS (1982) Imaging of primary Ewing sarcoma with N-13 L-glutamate. Radiol 142; 495–500

    CAS  Google Scholar 

  25. Sordillo PP, Reiman RE, Gelbard AS, Benua RS, Magill GB, Laughlin JS (1982) Scanning with N-13 glutamate: assessment of the response to chemotherapy of a patient with embryonal rhabdomyosarcoma. Am.’ Clin Oncol (CTf) 5; 285–289

    CAS  Google Scholar 

  26. Reiman RE, Benua RS, Gelbard AS, Allen JC, Vomero JJ, Laughlin JS (1982) Imaging of brain tumors following administration of DEN-13] glutamate 1 Nucl Med 23; 682–687

    CAS  Google Scholar 

  27. Yeh SDI, Henna RS, Grando R, Graham MC (1980) Fluorine-18 positron emission tomography of bone lesions. J Nucl Med 21 (6); P56

    Google Scholar 

  28. Yeh SDJ, Myers WG, Grando R, Reiman RE and Benua RS (1982) Carbon-11 dioxide imaging in bone tumors. In: Raynaud C (ed) Nuclear Medicine and Biology. Pergamon Press, pp 1992–1995

    Google Scholar 

  29. Gelbard AS, Benua RS, Reiman RE, McDonald JM, VomeroJJ, Laughlin JS (1980) Imaging of the human heart after administration of L-(N-13)-glutamate. J Nucl Med 21; 988–991

    CAS  Google Scholar 

  30. Moses J, BorerJS, Gelbard A, Reiman R, Devereaux R, Graham M, Lamonte C (1982) Myocardial glutamate metabolism in man: relation of uptake to left ventricular function in aortic regurgitation. Clin Res 30; 208A

    Google Scholar 

  31. Clarke LP, Laughlin JS, Mayer K (1972) Quantitative organ uptake measurement. Radial 102; 375–382

    CAS  Google Scholar 

  32. Clarke LP, Maugham EZ, Laughlin JS, Knapper WH, Mayer K (1976) Calibration methods for measuring splenic sequestration by extemal scanning. Med Phys 3; 324–327

    PubMed  CrossRef  CAS  Google Scholar 

  33. Brownell GL, Durham CA (1974) Recent developments in positron scintigraphy. In: Hine GJ, Sorenson JA (eds) Instrumentation in nuclear medicine. New York. Academic Press, pp 135–159

    Google Scholar 

  34. Canal LR (1978) Design and performance characteristics of a production model positron imaging system. IEEE Trans Nucl Sci NS-25 (1); 606–614

    Google Scholar 

  35. French RJ, McReady VR (1967) The use of F-18 for bone scanning. Br 1 Radiol 40: 655–661

    CrossRef  CAS  Google Scholar 

  36. Laughlin IS, Benua RS, Gelbard AS, Reiman RE et al (1981) Report on compounds labeled with N-13 or C-11 used in cancer metabolic studies with quantitative two-dimensional scanning and PET tomography. In: Medical radionuclide imaging (vol II ). Vienna. IAEA, p 249

    Google Scholar 

  37. Rosenspire KC, Gelbard AS, Cooper AIL, Schmid FA, Roberts J, YoungCW (1982) Uptake and metabolic fate of N-13 ammonia and glutamine in glutaminase sensitive and resistant marine tumors. J Nod Med 23 (5); p 37–38

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reiman, R.E., Rosen, G., Gelbard, A.S., Benua, R.S., Yeh, S.D.J., Laughlin, J.S. (1984). Diagnostic Demands in Clinical and Experimental Oncology: Application of Substrates Labeled with Positron-Emitting Radionuclides. In: Knapp, W.H., Vyska, K. (eds) Current Topics in Tumor Cell Physiology and Positron-Emission Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02393-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02393-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13007-9

  • Online ISBN: 978-3-662-02393-8

  • eBook Packages: Springer Book Archive