Skip to main content

In Vivo Determination of Kinetic Parameters for Glucose Influx and Efflux by Means of 3-O-11C-Methyl-D-Glucose, 18F-3-Deoxy-3-Fluoro-D-Glucose and Dynamic Positron Emission Tomography; Theory, Method and Normal Values

  • Conference paper

Abstract

Imbalance between perfusion, transport and metabolism may determine the ultimate damage in ischemic brain disease (Mies et a1. 1981, Pulsinelli et al. 1981). Therefore, for the quantitative assessment of ischemic brain disorders the. knowledge of at least two parameters is necessary. One is local perfusion. The second parameter should relate to tissue metabolism, for example, to the glucose utilisation rate (Sokoloff et al. 1977, Phelps et al. 1979, Kuhl et a1.1980) or to the local unidirectional glucose transport rate (Vyska et al. 1980, Vyska et al. 1981, Vyska et al. 1982, Vyska et al. 1983, Kloster et al. 1981).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, RH, Carreia JA, Alpert NM Baron J-D, Gouliamos A, Grotta IC, Brownell GL, Tareras 1M (1981) Positron imaging in ischemic stroke disease using compounds labeled with oxygen 15. Arch Neurol 38; 537–543

    CAS  Google Scholar 

  2. Agnew WF, Crone C (1967) Permeability of brain capillaries to hexoses and pentoses in the rabbit. Act Physiol Scand 70; 168–175

    Article  CAS  Google Scholar 

  3. Bachelard H5 (1971) Specificity and kinetic properties of monosaccharide uptake into guinea pig cerebral cortex, in vitro. J Neurochem 18; 213–222

    Article  PubMed  CAS  Google Scholar 

  4. Betz LA, Gilboe DD, Yudilevich DL, Drewes L (1973) Kinetics of unidirectional glucose transport into the isolated dog brain. Am J Physiol 225; 586–592

    PubMed  CAS  Google Scholar 

  5. Betz LA, Gilboe DD (1974) Kinetics of cerebral glucose transport in vivo. Inhibition by 3–0-methyl-glucose. Brain Res 65; 368–372

    Article  PubMed  CAS  Google Scholar 

  6. Betz AL, Gilboe DD, Drewes LB (1974) Effects of anoxia on net uptake and unidirectional transport of glucose into the isolated dog brain. Brain Res 67; 307–316

    Article  PubMed  CAS  Google Scholar 

  7. BidderTG (1968) Hexose translation across the blood-brain interface: configurational aspects. J Neurochem 15; 867–874

    Article  PubMed  CAS  Google Scholar 

  8. Buschiazzo PM, Terrell EB, Regen DM (1970) Sugar transport across the blood brain barrier. Am J Physiol 219; 1505–1513

    PubMed  CAS  Google Scholar 

  9. Cutler RWP, Sipe SC (1971) Mediated transport of glucose between blood and brain in the cat. Am J Physiol 120; 1182–1186

    Google Scholar 

  10. Czaky TZ, Wilson JE (1956) The fate of 3–0–14CHs–glucose in the rat. Biochim Biophys Acta 22; 185 – 186

    Article  Google Scholar 

  11. Halama JR (1983) Holden JE, Harley SI, Bernstein D, O’Hara KT, Ng CK, DeGrado TP (1983) Validation of F-18–3-Deoxy-3-Fluoro-D-Glucose (3 FDG) as an agent for measurement of glucose transport by positron emission tomography. J Nod Med 24; P52

    Google Scholar 

  12. Heise WD, Kloster G, Vyska K, Traupe C, Freundlich C, Becker V, Feinendegen LE, Stöcidin G (1981) Regional cerebral distribution of“Gmethyl-D-Glucose compared with CT perfusion patterns in stroke. J Comb Blood How Metabol 1; Suppl 1: 506–507

    Google Scholar 

  13. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin Cl, Kuhl DE (1980) Non-invasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238; E69 - E82

    PubMed  CAS  Google Scholar 

  14. Ingwar DA, Cronquist S, Ekberg R, RisbergJ, Hoedt-Rasmussen K (1965) Normal values of regional ce bral blood flow in man including flow and weight estimates of gray and white matter. Acta Neur Scand 41; Suppl 14: 72–84

    Google Scholar 

  15. Kennedy C, Sakurada O, Shinohara M, Jehle J, Sokoloff L (1979) Local cerebral glue utilisation in the normal conscious macaque monkey. Ann Neural 4; 293–301

    Article  Google Scholar 

  16. Kloster G, Müller-Platz C, Laufer P (1981) 3–1 C-methyl-D-glucose a potential agent for regional cerebral glucose utilisation. Synthesis, chromatography, and tissue distribution in mice. 1 Lab Comp Radiopharm 18; 855–863

    Google Scholar 

  17. Knast EJ, Machulla H-J, DutschkaK (1982) Radiophanoaceuticals IV.: 1.F-Labelling with water target produced “F. Synthesis and quality control of 15F-3-Deoxy3-Fluoro-D-glucose. Radiochem Radioanal Letters 55; 1, 21–28

    Google Scholar 

  18. Crust EJ, Machulla H-J, Dutschka K, Molls M, Kafka Ch, Graebe K-I (1983) 1.F3-Deoxy-3- Fluor -D-Glukose als potentieller Tracer furs die Him-und Headiagnostik–Synthese und tierexperimentelle Untersuchungen. Nuc Compact 14; 40–44

    Google Scholar 

  19. Kuhl DE, Phelps ME, Kowell AP, Metter E7, Selin C, Winter1 (1980) Effects of stroke on local cerebral metabolism and perfusion: NHs. Annals of Neurot 8; 47–60

    CAS  Google Scholar 

  20. Larsen OA, Lassen NA (1964) Cerebral hematocrit in normal man. J Appl Physiol 19; 571–574

    PubMed  CAS  Google Scholar 

  21. Lund-Andersen H, Kjeldsen CS (1976) Kinetical analysis of the uptake of glucose analogs by rat brain cortex slims from normal and ischemic brain. In: Levi G, Battis-tin L and LajthaA (eds) Transport phenomena in the nervous system: Physiological and pathological aspects. New York London. Plenum Press, pp 265–272

    Google Scholar 

  22. Mies G, Hossman KA (1981) Double tracer autoradiographic investigation of regional blood Bow and glucose metabolism during spreading depression. J Cereb Blood Flow Metabol 1, Sapp1. 1: 94–95, 1981

    Google Scholar 

  23. Narahara HT, Wand P, Cori CF (1960) Studies of tissue permeability VII. The effect of insulin on glucose generation and phosphorylation in frog muscle. J Biochem 235; 3370–3378

    Google Scholar 

  24. Macey RI (1979) Mathematical models of membrane transport processes. In: Andre-oh TE, Hoffman JF and Fanestil DD (eds) Physiology of membrane disorders. New York London. Plenum Medical Book Company, pp 125–146

    Google Scholar 

  25. Mahler HR, Cordes EH (1971) Biological Chemistry 2nd Edition. New York. Evanston. San Francisco London. Harper and Row Publishers, pp 267–325

    Google Scholar 

  26. Obrist WD, Thompson HK, King CH, Wang HS (1967) Determination of regional cerebral blood flow by inhalation of’smXenon. Ciro Res 20; 124–135

    Article  CAS  Google Scholar 

  27. Oldendorf WH (1971) Brain uptake of radiolabeled amino acids, amines and hexes after arterial injection. Am J Physiol 221; 1629–1639

    PubMed  CAS  Google Scholar 

  28. Pardridge WM, OldendorfWH (1975) Kinetics of blood brain barrier transport of hexoses. Biochim Biophys Acta 382; 377–382

    CAS  Google Scholar 

  29. Phelps ME, Huang SC, Hoffman EJ, Sean C, Sokoloff L, Kuhl DE (1979) T mographic measurement of local cerebral glucose metabolic rate in humans with ‘1F-Fluore-2-deoxy-D-glucose: Valididation of method. Ann of Neural 6; 371–388

    Google Scholar 

  30. Phelps ME, MazziottaJC, Kuhl DE, Nuwer M, Packwood J, MetterJ, Engel J Jr (1981) Tomographic mapping of human cerebral metabolism, visual stimulation and deprivation. Neurology 31; 517–529

    Article  PubMed  CAS  Google Scholar 

  31. Phelps ME, MazziottaJC, Huang SC (1982) Study of cerebral function. J Cereb Blood Flow Metabol 2; 113–162

    Article  CAS  Google Scholar 

  32. Pulsinelli W, Brierley J, Duffy T, Levy D, Plum F (1981) Ischemic neuronal damage, postischemic regional blood Bow and glucose metabolism in rat brain. J Cereb Blood Flow Metabol l; Suppl 1: 166–167

    Google Scholar 

  33. Reivich M, Greenberg J, AlaviA (1979) The use of Buorodeoxy-glucose technique for mapping of functional neural pathways in man. Acta Neural Scand 60, Suppl 72; 198–199

    Google Scholar 

  34. Reivich M, Alavi A, Wolf A, Greenberg JH, FowlerJ, Christman D, MacGregor R, Jones SC, London J, ShiueC, YonekuraY (1982) Use of 2-deoxy-D(1–5C)gluco for the determination of local cerebral glucose metabolism in humans: variation within and between subjects. J Cereb Blood Flow Metabol 2; 307–319

    CAS  Google Scholar 

  35. Segel IH (1975) Enzyme kinetics. New York London Sydney Toronto. Wiley–Interscience Publication, John Wiley, pp 34–39

    Google Scholar 

  36. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, PatlakCS, Pettigrew KD, Sakurada O, Shinohara M (1977) The 11C-deoxyglucose method for the measurement of local cerebral glucose utilisation: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28; 897–916

    Google Scholar 

  37. Vyska K, Höck A, Freundlieb C, Feinendegen LE, Kloster G, Stöcklin G (1980) 3“C-Methyl glucose a promising agent for in vivo assessment of function of myocardial cell membrane. J Nue! Med 21; P56–P57 (Abstr.)

    Google Scholar 

  38. Vyska K, Freundlieb C, Höck A, Becker V, Feinendegen LE, Kloster G, Stöcklin G, Troupe H, Heiss WD (1981) The assessment of glucose transport across the blood brain barrier in man by use of 31 Cmethyl-D-Glucose. J Cereb Blood Flow Metabol 1, Suppl 1; 42–43

    Google Scholar 

  39. Vyska K, Freundlieb C, Hock A, Becker V, Schmid A, Feinendegen LE, Kloster G, Stöcklin G, Heiss WD (1982) Analysis of local perfusion rate and local glucose transport rate (LGTR) in brain and heart in man by means of C-11-Methyl-D Glucose (CMG) and dynamic Positron Emission Tomography (dPET). In: Hofer R, Bergman H (eds) Radioaktive Isotope in Klinik und Forschung, 15. Band, Gasteiner Internationales Symposium 1982. Verlag H. Egermann, pp 129–142

    Google Scholar 

  40. Vyska K, Kloster G, Feinendegen LE, Heiss WD, Stöcklin G, Hock A, Freundlieb C, Aulich A, Schuier F, Thal HU, Becker V, Schmid A (1983) Regional Perfusion and Glucose Uptake Determination with “C-Methyl-Glucose and Dynamic Positron Emission Tomography. In: Heiss WD, Phelps ME (eds) Positron Emission Tomography of the Brain. Berlin Heidelberg New York Springer, pp 169–180

    Google Scholar 

  41. Whitfield CF, Rames RS, Morgan HE (1974) Acceleration of sugar transport in avian erythrocytes by catécholamines. J Biol Chem 249; 4181–4188

    PubMed  CAS  Google Scholar 

  42. Yamamoto YL, Meyer F, Menon D, Roland P, Diksic M (1983) Regional Cerebral Blood Flow Measurement and Dynamic Positron Emission Tomography. In: Heiss WD, Phelps ME (eds) Positron Emission Tomography of the Brain. Berlin Heidelberg New York. Springer

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vyska, K. et al. (1984). In Vivo Determination of Kinetic Parameters for Glucose Influx and Efflux by Means of 3-O-11C-Methyl-D-Glucose, 18F-3-Deoxy-3-Fluoro-D-Glucose and Dynamic Positron Emission Tomography; Theory, Method and Normal Values. In: Knapp, W.H., Vyska, K. (eds) Current Topics in Tumor Cell Physiology and Positron-Emission Tomography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02393-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02393-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13007-9

  • Online ISBN: 978-3-662-02393-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics