Peptides are formed from two or several amino acids linked by acid amide bonds. Coupling of two amino acids yields dipeptides, of three amino acids tripeptides, etc. Oligopeptides contain up to 10 amino acids, polypeptides 10 to about 100 amino acids. The sequence of amino acids in a peptide is called its primary structure.


Hydroxamic Acid Cyclic Dipeptide Aspergillic Acid Acid Amide Bond Muramic Acid Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Further Reading

  1. Adler, M. W.: Opioid peptides. Life Sci. 26, 497–510 (1980)PubMedCrossRefGoogle Scholar
  2. Jakubke, H. D., Jeschkeit, H.: Aminosäuren, Peptide, Proteine. Akademie Verlag, Berlin 1982Google Scholar
  3. Kamija, Y., Sakurai, A.: Mating pheromohes of heterobasidiomycetous yeasts. Naturwissenschaften 68, 128–133 (1981)CrossRefGoogle Scholar
  4. Kleinkauf, H., von Döhren, H.: Nucleic acid independent synthesis of peptides. Curr. Top. in Microbiol. Immunol. 91, 129–177 (1981)Google Scholar
  5. Ondetti, M. A., Cushman, D. W.: Enzymes of the renin-angiotensin system and their inhibitors. Annu. Rev. Biochem. 51, 283–308 (1982)PubMedCrossRefGoogle Scholar
  6. Rennenberg, H.: Glutathione metabolism and possible biological roles in higher plants. Phyto-chemistry 21, 2771–2781 (1982)Google Scholar
  7. Schally, A. V., Coy, D. H., Meyers, C. A.: Hypothalamic regulatory hormones. Annu. Rev. Biochem. 47, 89–128 (1978)PubMedCrossRefGoogle Scholar
  8. Zühlke, H.: Insulin — biosynthesis and mode of action. In: Cell Differentiation (L. Nover, M. Luckner, B. Parthier, eds.), pp. 324–348. Fischer/Springer, Jena/Berlin 1982CrossRefGoogle Scholar
  9. Johne, S., Gröger, D.: Naturstoffe mit Diketopiperazinstruktur. Pharmazie 32, 1–16 (1977)PubMedGoogle Scholar
  10. Kirby, G. W., Robins, D. J.: The biosynthesis of gliotoxin and related epipolythiodioxopiper-azines. In: The Biosynthesis of Mycotoxins (P. S. Steyn, ed.), pp. 301–326. Academic Press, New York 1980Google Scholar
  11. Yamazaki, M.: The biosynthesis of neurotropic mycotoxins. In: The Biosynthesis of Mycotoxins (P. S. Steyn, ed.), pp. 193–222. Academic Press, New York 1980Google Scholar
  12. Neilands, J. B.: Microbial envelope proteins related to iron. Annu. Rev. Microbiol. 36, 285–309 (1982)PubMedCrossRefGoogle Scholar
  13. Aoki, H., Okuhara, M.: Natural β-lactam antibiotics. Annu. Rev. Microbiol. 34, 159–181 (1980)PubMedCrossRefGoogle Scholar
  14. Morin, R. B., Gorman, M. (eds.): Chemistry and Biology of β-Lactam Antibiotics. Academic Press, New York 1982Google Scholar
  15. Seltmann, G.: Die bakterielle Zellwand. Fischer, Jena 1982Google Scholar
  16. Jacob, F.: Evolution and tinkering. Science 196, 1161–1166 (1977)PubMedCrossRefGoogle Scholar
  17. Luckner, M.: Expression and Control of Secondary Metabolism. In: Encyclopedia of Plant Physiology, New Series, Vol. 8, Secondary Plant Products (E. A. Bell, B. V. Charlwood, eds.), pp. 23–63, Springer, Berlin-Heidelberg-New York 1980Google Scholar
  18. Mothes, K. : Secondary plant substances as materials for chemical high quality breeding in higher plants. In: Biochemical Interactions between Plants and Insects (J. W. Wallace, R. L. Man-sell, eds.), pp. 385–405. Plenum, New York 1976CrossRefGoogle Scholar
  19. Zähner H.: What are secondary metabolites? Folia Microbiol. 24, 435–443 (1979)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Martin Luckner
    • 1
  1. 1.Sektion PharmazieMartin-Luther-UniversitätHalle-WittenbergDeutschland

Personalised recommendations