Vibration Analysis of Elastic Rotational Shells Using Microcomputers

  • R. Delpak
  • V. Peshkam
Conference paper

Abstract

An element was developed previously which is capable of predicting the undamped natural frequencies of thin elastic shells of revolution. The above element possessed a number of features, e.g. a change in element characteristics could be achieved by a change in the input data. The above formulation has now been updated so that the internal degrees of freedom have been condensed. Also an efficient eigenvalue-economiser routine has been developed to reduce the iteration time. The routine is capable of selecting the masters analytically at a given cut off frequency. These have facilitated the storage and running of the above routines on modern micro-computers. A number of well established examples have been tackled and the results are given in the text.

Keywords

Marketing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, R.N. and Warburton, G.B. (1949) Proc. Roy. Soc., 197, 238.MATHCrossRefGoogle Scholar
  2. 2.
    Carter, R.L. et al (1968) Free and Forced vibrations of hyperbolical shells of revolution.Struc.Res.Ser., No. 334, Civil Eng. Studies, Univ. of Illinois.Google Scholar
  3. 3.
    Delpak, R. (1980) A finite element assessment of natural frequencies of undamped elastic rotational shells. App. Math. Mod., 4, 357–368.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Delpak, R. (1975) Ph.D. Thesis CNAA, Lond.Google Scholar
  5. 5.
    Guyan, R.J. (1965) Reduction of stiffness and mass matrices AIAA J., 33: 380.Google Scholar
  6. 6.
    Hashish, R.N. and Abu-Sitta, S.H.J. (1971) J.Eng.Mech.Div. ASCE, 97, 253.Google Scholar
  7. 7.
    Irons, B.M. (1965) Shape functions for elements with point conformity. A.S.M., 1204, Rolls-Royce Library.Google Scholar
  8. 8.
    Irons, B.M. (1963) Eigenvalue economisers in vibration problems. J.Roy. Aer. Soy., 67, 526–528.Google Scholar
  9. 9.
    Kraus, H. (1967) Thin elastic shells. John Wiley and inc., New York, 237–331.MATHGoogle Scholar
  10. 10.
    Love, A.E.H. (1944) A treatise on the mathematical theory of elasticity. Dover, New York.MATHGoogle Scholar
  11. 11.
    Novozhilov, V.V. (1964) Thin shell theory. Noordhoff, The Netherlands.Google Scholar
  12. 12.
    Popov, E.P. and Sharifi, P. (1970) A refined curved element for thin shells of revolution. John Wiley & Sons, Ltd.Google Scholar
  13. 13.
    Przemieniecki, J.S. (1968) Theory of matrix structural analysis. McGraw Hill, New York, 147–148.MATHGoogle Scholar
  14. 14.
    Reissner, E. (1955) Quarterly of App. Math., 13, 279MathSciNetMATHGoogle Scholar
  15. 15.
    Sen, S.K. and Gould, P.L.J. (1974) Eng. Mech. Div. ASCE, 100, 283.Google Scholar
  16. 16.
    Shah, V.N. and Raymund, M. (1982) Analytical selection of masters for the reduced eigenvalue problem. Int. J. Num. Meth. Eng., 18, 89–98MATHCrossRefGoogle Scholar
  17. 17.
    Strutt, M.J.O. (1933) Eigenschwingungen der Kegelschale. Annalen der Physik, 17, 729–735.CrossRefGoogle Scholar
  18. 18.
    Weingarten, V.I.J. (1965) Eng. Mech. Div. ASCE, 91, 69.Google Scholar
  19. 19.
    Zarghamme, M.S. and Robinson, A.A. (1967) A numerical method for analysis of free vibration of spherical shells. AJAA J., 5, 7: 1256–1261.Google Scholar
  20. 20.
    Zienkiewicz, O.C. (1977) The finite element method. McGraw Hill, Lond. & New York.MATHGoogle Scholar
  21. 21.
    Zienkiewicz, O.C., Irons, B.M. and Anderson, R.G. (1967) Vibration and stability of plates. Research report No. C/R/78/67 Univ. of Wales, Swansea.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1983

Authors and Affiliations

  • R. Delpak
    • 1
  • V. Peshkam
    • 1
  1. 1.The Polytechnic of WalesWalesUK

Personalised recommendations