Skip to main content

Flow of Gas-Solid Mixtures through Standpipes and Valves

  • Chapter
Multiphase Science and Technology
  • 544 Accesses

Abstract

The subject matter of this chapter is the flow of a gas-solid mixture in a pipe and through an orifice: the flow of the granular solid will be downward, while the flow of the gas may be cocurrent or countercurrent to the solid. Such a pipe, with a downflow of particulate solid, is often referred to as a standpipe. It can be a vertical pipe connected to the bottom opening of a hopper, a cyclone dipleg, or a solids transfer line for transferring solids out of a fluidized bed. Examples of standpipes can be found in the hydrocarbon cracking process, the Fischer-Tropsch process, the coal gasification and liquefaction processes, and other processes involving the downflow of solids in a pipe. A number of such processes have been described by Zenz and Othmer (1960) and by Kunii (1980). The flow of solids through an orifice is often associated with the downflow of solids through a pipe where a valve (i.e., an orifice) is present at one or both ends of a standpipe.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altiner, H. K., and J. F. Davidson 1980, in Fluidization, J. R. Grace and J. M. Matsen, eds. New York: Plenum, pp. 461–468.

    Google Scholar 

  • Anderson, T. B., and R. Jackson 1967, Hydrodynamic Stability of a Fluidized Bed. Ind. Eng. Chem. Fund. vol. 6, pp. 478–484.

    Article  CAS  Google Scholar 

  • Anonymous 1980, Refining Operations Updated, Hydrocarbon Process. March, pp. 55–56.

    Google Scholar 

  • Bachovchin, D. M., P. R. Bulik, R. A. Newby, and D. L. Keairns 1979, Solids Transport between Adjacent CAFB Fluidized Beds. Report No. EPA–600/7–79–021. Washington, D.C.: U.S. Environmental Protection Agency.

    Google Scholar 

  • Beverloo, W. A., H. A. Leniger, and J. van de Velde 1961, The Flow of Granular Solids through Orifices. Chem. Eng. Sci. vol. 15, pp. 260–266.

    Article  CAS  Google Scholar 

  • Brown, R. L., and J. C. Richards 1959, Exploratory Study of the Flow of Granules through Apertures. Trans. Inst. Chem. Eng. vol. 37, pp. 108–119.

    CAS  Google Scholar 

  • Brown, R. L., and J. C. Richards 1960, Profile of Flow Granules through Apertures. Trans. Inst. Chem. Eng. vol. 38, P. 243.

    Google Scholar 

  • Bulsara, P. U., F. A. Zenz, and R. A. Eckert 1964, Pressure and Additive Effects on Flow of Bulk Solids. Ind. Eng. Chem. Process Design Develop. vol. 3, no. 4, pp. 348–355.

    Article  CAS  Google Scholar 

  • Burkett, R. J., P. Chalmers-Dixon, P. J. Morris, and D. L. Pyle 1971, On the Flow of Fluidized Solids through Orifices. Chem. Eng. Sci. vol. 26, pp. 405–412.

    Article  CAS  Google Scholar 

  • Callcott, T. G. 1972, The Auscoke Process. Prcc. Aust. Inst. Min. Metall. Newcastle Conference, pp. 177–186. [Australasian Institute of Mining and Metallurgy, publisher].

    Google Scholar 

  • Carleton, A. J. 1972, The Effect of Fluid Drag Forces on the Discharge of Free-Flowing Solids from Hoppers. Powder Technol. vol. 6, pp. 91–96.

    Article  Google Scholar 

  • Chen, T. Y,, W. P. Walawender, and L. T. Fan 1979, Moving-Bed Solids Flow between Two Fluidized Beds. Powder Technol. vol. 22, pp. 89–96.

    Article  CAS  Google Scholar 

  • Chen, T. Y., W. P. Walawender, and L. F. Fan 1980a, Moving-Bed Solids Flow in an Inclined Pipe Leading into a Fluidized Bed. Part I. AiChE J. vol 26, pp. 24–30.

    Article  CAS  Google Scholar 

  • Chen, T. Y., W. P. Walawender, and L. T. Fan 1980b, Moving-Bed Solids Flow in an Inclined Pipe Leading into a Fluidized Bed. Part II. AIChE J. vol. 26, pp. 31–36.

    Article  CAS  Google Scholar 

  • Davidson, J. F., and D. Harrison 1963, Fluidized Particles. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davidson, J. F., and R. M. Nedderman 1973, The Hour Glass Theory of Hopper Flow. Trans. Inst. Chem. Eng. vol. 51, pp. 29–35.

    Google Scholar 

  • de Jong, J. A. H. 1970, Vertical Air-Controlled Particle Flow from a Bunker through Circular Orifices. Powder Technol. vol. 3, pp. 279–286.

    Article  Google Scholar 

  • de Jong, J. A. H. 1975, Aerated Solids Flow through a Verticle Standpipe below a Pneumatically Discharged Bunker. Powder Technol. vol. 12, pp. 197–200.

    Article  Google Scholar 

  • de Jong, J. A. H., and Q. E. J. J. M. Hoelen 1975, Cocurrent Gas and Particle Flow during Pneumatic Discharge from a Bunker through an Orifice. Powder Technol. vol. 12, pp. 201–208.

    Article  Google Scholar 

  • Do, D. D. 1976, Flow of Fluidized Solids and Gas through an Orifice, and the Design of a Standpipe in a Fluidized Regime. B.E. thesis, University of Queensland.

    Google Scholar 

  • Do. D. D., P. J. Jones, L. S. Leung, and J. M. Matsen 1977, Aeration and Compression Effects on Fluidized Solids - Gas Flow Down Standpipes. Proc. Particle Technology, Nuremberg, H. Brauer and O. Molerus, eds., pp. D23 - D46.

    Google Scholar 

  • Dries, H. W. A. 1980a, Packed-Bed Solids Downflow in a Catalytic Cracker Standpipe. Proc. Powder Europa 80, IPI.

    Google Scholar 

  • Dries, H. W. A. 1980b, Cocurrent Gas-Solid Downflow in Vertical Catalytic Cracker Standpipes. Fluidization. J. R. Grace and J. M. Matsen, eds., New York: Plenum, pp. 493–500.

    Google Scholar 

  • Eleftheriades, C. M., and M. R. Judd 1978, The Design of Downcomers Joining Gas-Fluidized Beds in Multistage Systems. Powder Technol. vol. 21,. pp. 217–225.

    Google Scholar 

  • Engh, T. A. 1969 Effect of Injected Air on the Rate of Flow of Solids. Trans. ASME vol. 91, pp. 335–341.

    Article  Google Scholar 

  • Ergun, S. 1952, Fluid Flow through Packed Columns. Chem. Eng. Prog. vol. 48, no. 2, pp. 89–94.

    CAS  Google Scholar 

  • Fowler, R. T, and J. R_ Glastonbury 1959, The Flow of Granular Solids through Orifices. Chem Eng. Sci. vol. 10, pp. 150–156.

    Article  CAS  Google Scholar 

  • Franklin, F. C., and L. N. Johanson 1955, Flow of Granular Materials through a Circular Orifice. Chem. Eng. Sci. vol. 4, pp. 119–129.

    Article  CAS  Google Scholar 

  • Geldart, D. 1973, Types of Gas Fluidization. Powder Technol. vol. 7, pp. 285–291.

    Article  CAS  Google Scholar 

  • Ginestra, J. C., S. Rangachari, and R. Jackson 1980a, Flow Regimes in a One-Dimensional Model of a Standpipe. Fluidization.

    Google Scholar 

  • J. R. Grace and J. M. Matsen, eds., New York: Plenum, pp. 477–484.

    Google Scholar 

  • Ginestra, J. C., S. Rangachari, and R. Jackson 1980b, A One-Dimensional Theory of Flow in a Vertical Standpipe. Powder Technol. vol. 27, pp. 69–84.

    Article  CAS  Google Scholar 

  • Grace, J. R., and J. Tout 1979, A Theory for Cluster Formation in Vertically Conveyed Suspensions of Intermediate Density. Trans. Inst. Chem. Eng. vol. 57, pp. 49–54.

    CAS  Google Scholar 

  • Hinze, J. O. 1962, Momentum and Mechanical Energy Balance Equations for a Flowing Homogeneous Suspension with Slip between the Two Phases. Appt. Sci. Res. Sec. A. vol. 11, pp. 33–43.

    Google Scholar 

  • Holland, J., J. E. P. Miles, C. Schofield, and C. A. Shook 1969, Fluid Drag Effects in the Discharge of Granules from Hoppers. Trans. Inst. Chem. Eng. vol. 47, pp. 154–159.

    Google Scholar 

  • Holtkamp, W. C. A., F. T. Kelly, and T. Shingles 1977, Circulating Fluid-Bed Catalytic Reactor for the Fischer-Tropsch Synthesis at SASOL II. Chem. S. Afr. March, pp. 44–46. (No volume available).

    Google Scholar 

  • Ishida, M., and T. Shirai 1975, Circulation of Solid Particles within the Fluidized Bed with a Draft Tube. J. Chem. Eng. Jpn, vol. 8, pp. 477–481.

    Article  Google Scholar 

  • Jackson, R. 1963a, The Mechanics of Fluidized Beds. Trans. Inst. Chem..Eng. vol. 41, pp. 13–18.

    CAS  Google Scholar 

  • Jackson, R. 1963b, The Stability of the State of Uniform Fluidization. Trans. Inst. Chem. Eng. vol. 41, pp. 1–12.

    Google Scholar 

  • Jackson, R. 1970, The Present States of Fluid-Mechanical Theories of Fluidization. Chem. Eng. Frog. Symp. Ser. vol. 66, no. 105 pp. 3–13.

    Google Scholar 

  • Jones, P. J. 1981, Downflow of Gas-Solid Mixtures in Bottom-Restrained Vertical Standpipes. Ph.D. thesis, University of Queensland.

    Google Scholar 

  • Jones, P. J., and L. S. Leung 1977, Three Case Studies of Moving Solids Flow Down a Standpipe. Proc. 5th Nat. Chem. Eng. Conf, Canberra, Inst. Chem. Eng. Aust. pp. 322–327.

    Google Scholar 

  • Jones, P. J., C. S. Teo, and L. S. Leung 1980, The Stability of Vertical Gas-Solid Downflow in Bottom-Restrained Standpipes. Fluidization. J. R. Grace and J. M. Matsen, eds., New York: Plenum, pp. 469–476.

    Google Scholar 

  • Judd, M. R. 1977, “Comment on paper by Do et al.” Proceedings Particle Technology, Nuremberg, H. Brauer and O. Molerus, eds. vol. 3, pp. Di18-Di21.

    Google Scholar 

  • Judd, M. R. and P. D. Dixon 1976, The Flow of Fine Dense Solids Down a Vertical Standpipe. Paper presented at AIChE Annual Conference, Chicago, December.

    Google Scholar 

  • Judd, M. R., and P. D. Dixon 1979, The Effect of Aeration on the Flowability of Powders. Trans. Inst. Chem. Eng. vol. 56, pp. 67–69.

    Google Scholar 

  • Judd, M. R., and D. N. Rowe 1978, Dense-Phase Flow of a Powder Down a Standpipe. Proceedings International Fluidization Conference, J. F. Davidson, ed., Cambridge: Cambridge University Press, pp. 110–115.

    Google Scholar 

  • Keneman, F. E. 1960, Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk Mekh. Mashinostr. vol. 2, pp. 70–75.

    Google Scholar 

  • Ketchum, M. S. 1919, The Design of Walls, Bins, and Grain Elevators. Third Edition, New York. McGraw-Hill, p. 323.

    Google Scholar 

  • Knowlton, T. M., and I. Hirsan 1978, L-Valves Characterized for Solid Flow. Hydrocarbon Process. vol. 57, pp. 149–156.

    CAS  Google Scholar 

  • Knowlton, T. M., I. Hirsan, and L. S. Leung 1978, The Effect of Aeration Tap Location on the Performance of a Nonmechanical J-Valve. Proceedings International Fluidization Conference, J. F. Davidson; ed., Cambridge: Cambridge University Press, pp. 128–131.

    Google Scholar 

  • Kojabashian, C. 1958, Properties of Dense-Phase Fluidized Solids in Vertical Downflow. Ph.D. thesis Massachusetts Institute of Technology.

    Google Scholar 

  • Kunii, D. 1980, Chemical Reaction Engineering and Research and Development in Gas-Solid Systems. Chem. Eng. Sci. vol. 35, pp. 1887–1911.

    Article  CAS  Google Scholar 

  • Kunii, D., and O. Levenspiel 1969, Fluidization Engineering, New York: Wiley, pp. 13–63.

    Google Scholar 

  • Kurz, H. P., and H. Rumpf 1975, Flow Processes in Aerated Silos. Powder Technol. vol. 11, pp. 147–154.

    Article  Google Scholar 

  • Kwauk, M. 1974, Particulate Fluidization in Chemical Metallurgy, in Proceedings lst Iranian Congress of Chemical Engineering, P. Davalloo et al., eds. vol. 2, New York: Elsevier, pp. 539–558.

    Google Scholar 

  • La Nauze, R. A., and J. F. Davidson 1976, in Fluidization Technology, vol. 2, D. L. Keairns, M. A. Bergouncn, J. F. Davidson and J. M. Matsen, eds. Washington, D.C.: Hemisphere, pp. 113–124.

    Google Scholar 

  • Lapidus, L., and J. C. Elgin 1957, Mechanics of Vertical Moving Fluidized Systems. AIChE J. vol. 3, pp. 63–68.

    Article  CAS  Google Scholar 

  • Ledinegg, M. 1938, Unstabilität der Strömung bei natürlichem und Zwangumlauf, Die Wärme vol. 61, no. 48, pp. 891–898.

    Google Scholar 

  • Leung, L. S. 1976, in Fluidization Technology, vol. II, D. L. Keairns, M. A. Bergounon, J. F. Davidson and J. M. Matsen, eds. Washington, D.C.: Hemisphere, pp. 125–134.

    Google Scholar 

  • Leung, L. S. 1977, Design of Fluidized Gas-Solids Flow in Standpipes. Powder Technol. vol. 16, pp. 1–6.

    Article  Google Scholar 

  • Leung, L. S. 1980, The Ups and Downs of Gas-Solid Flow–A Review. Fluidization. J. R. Grace and J. M. Matsen, eds. New York: Plenum, pp. 25–68.

    Google Scholar 

  • Leung, L. S., and P. J. Jones 1978a, Coexistence of Fluidized Solids Flow and Packed Flow in Standpipes. Proceedings of International Fluidization Conference, J. F. Davidson, ed. Cambridge: Cambridge University Press, pp. 116–121.

    Google Scholar 

  • Leung, L. S, and P. J, Jones 1978b, Flow of Gas-Solid Mixtures in Standpipes–a Review. Powder Technol. vol. 20, pp. 145–160.

    Article  CAS  Google Scholar 

  • Leung, L. S., and C. S. Teo 1983, Flow of Cohesive Solids in Standpipes Against a Pressure Gradient. Chem. Eng. Sci. vol. 38, pp. 115–120.

    Article  CAS  Google Scholar 

  • Leung, L. S., and E. T. White 1977, Fluidized Solids Flow Operation in Standpipes in Hydrocarbon Catalytic Cracking Plants. Chem. Eng. Aust. vol. 2, pp. 1–4.

    Google Scholar 

  • Leung, L. S., and R. J. Wiles 1976, A Quantitative Design Procedure for Vertical Pneumatic Conveying Systems. Ind. Eng. Chem, Process Des. Dev vol. 15, pp. 552558.

    Google Scholar 

  • Leung, L. S., and L. A. Wilson 1973, Downflow of Solids in Standpipes. Powder Technol. vol. 7, pp. 343–349.

    Article  Google Scholar 

  • Leung, L. S., P. J. Jones, and T. M. Knowlton 1977, An Analysis of Moving-Bed Flow of Solids Down Standpipes and Slide Valves. Powder Technol. vol. 18, pp. 7–15.

    Google Scholar 

  • Lighthill, M. J., and G. B. Whitham 1955, On Kinematic Waves: Part 1. Proc. R. Soc. London, A vol. 229, pp. 229–295.

    Google Scholar 

  • Liu Dalu, Li Xegirang, and Mooson Kwauk, 1980, Pneumatically-Controlled Multistage Fluidized Beds. Fluidization. J. R. Grace and J. M. Matsen, eds. New York: Plenum, pp. 485–492.

    Google Scholar 

  • McDougall, I. R., and A. C. Evans 1966, The Influence of Air-Pressure Difference on the Gravity Flow of Particulate Solids through an Orifice. Trans. Inst. Chem. Eng. vol. 44, pp. T15 - T24.

    CAS  Google Scholar 

  • McDougall, I. R., and G. H. Knowles 1969, Flow of Particles through Orifices. Trans. Inst. Chem. Eng. vol. 47, pp. T73 - T79.

    Google Scholar 

  • Massimilla, L., and G. Volpicelli 1963, Note on Efflux from Solid-Gas Fluidized Beds. AIChE J. pp. 139–140.

    Google Scholar 

  • Massimilla, L., V. Bette, and C. della Rocca 1961, A Study of Streams of Solids Flowing from Gas-Solid Fluidized Beds. AIChE J. vol. 7, pp, 502–508.

    Google Scholar 

  • Matsen, J. M. 1973, Flow of Fluidized Solids and Bubbles in Standpipes and Risers. Powder Technol. vol. 7, pp. 93–96.

    Article  Google Scholar 

  • Matsen, J. M. 1976, Fluidization Technology, vol. II, D. L. Keairns, M. A. Bergounon, J. F. Davidson and J. M. Matsen, eds. Washington D.C.: Hemisphere, pp. 135–153.

    Google Scholar 

  • Matsen, J. M., S. Hovmand, and J. F. Davidson 1969, Expansion of Fluidized Beds in Slug Flow. Chem. Eng. Sci. vol. 24, pp. 1743–1754.

    Article  Google Scholar 

  • Molerus, O. 1967, Hydrodynamic Stability of a Fluidized Bed. Chemi. Ing. Tech. vol. 39, pp. 341–348.

    Article  CAS  Google Scholar 

  • Murray, J. D. 1965, On the Mathematics of Fluidization, Parts 1 and 2. J. Fluid. Mech. vol. 21, pp. 465–478; vol. 22, pp. 57–69.

    Article  Google Scholar 

  • Nedderman, R. M., and U. TUZün 1978, A Kinematic Model for the Flow of Granular Materials. Powder Technol. vol. 21, pp. 243–253.

    Google Scholar 

  • Nicklin, D. J. 1962, Two-Phase Bubble Flow. Chem. Eng. Sci. vol. 17, pp. 693–699.

    Article  CAS  Google Scholar 

  • Papazoglou, C. S., and D. L. Pyle 1970, Air-Assisted Flow from a Bed of Particles. Powder Technol. vol. 4, pp. 9–18.

    Article  Google Scholar 

  • Pigford, R. L., and T. Baron 1965, Hydrodynamic Stability of a Fluidized Bed. Ind. inc. Chem. Fund. vol. 4, pp. 81–86.

    Article  CAS  Google Scholar 

  • Pullen, R. J. F. 1974, Studies of Solids Flowing Downward from a Hopper through Vertical Pipes. Ph.D. thesis, University of Leeds.

    Google Scholar 

  • Rausch, J. M. 1948, Gravity Flow of Solid Beds in Vertical Towers. Ph.D. thesis, Princeton University.

    Google Scholar 

  • Resnick, W., Y. Haled, A. Klein, and E. Palm 1966, Effect of Differential Pressure on Flow of Granular Solids through Orifices. Ind. Eng. Chem. Fund. vol. 5, no. 3, p. 392.

    Article  CAS  Google Scholar 

  • Richardson, R. J., and N. Zaki 1954, Sedimentation and Fluidization, Part I. Trans. Inst. Chem. Eng. vol. 32, pp. 35–53.

    CAS  Google Scholar 

  • Savage, S. B. 1965, The Mass Flow of Granular Materials Derived from Coupled Velocity-Stress Fields. Br. J. Appl. Phys. vol. 16, p. 1185.

    Article  Google Scholar 

  • Savage, S. B. 1967, Gravity Flow of a Cohesionless Bulk Solid in a Converging Conical Channel. Int. J. Mech. Sci. vol. 9, pp. 651–659.

    Article  Google Scholar 

  • Shannhan, C. E., J. Schwarz 1954, M.S. thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Shook, C. A., A. J. Carleton, and R. J. Flain 1970, Effect of Fluid Drag on the Flow-Rate of Granular Solids from Hoppers. Trans. Inst. Chem. Eng. vol. 48, pp. T173 - T175.

    Google Scholar 

  • Singh, B., G. R. Rigby, and R. G. Callcott 1977, Lean-Phase Pneumatic Conveying of Particulate Materials Using a Standpipe Feed System. Proc. Chemeca 77 Conf. Inst. Chem. Eng. Aust. pp. 289–295.

    Google Scholar 

  • Slis, P. L., Th. W. Willemsee, and H. Kramers 1959, The Response of the Level of a Liquid-Fluidized Bed to a Sudden Change in Fluidizing Velocity. Appl Sci. Res. A. vol. 8, pp. 209–217.

    Article  Google Scholar 

  • Smith, J. C., and U. S. Hattiangadi 1980, Profiling Solid Flow from Bins. Chem. Eng. Commun. vol. 6, pp. 105–115.

    Article  CAS  Google Scholar 

  • Spink, C. D., and R. M. Nedderman 1978, Gravity Discharge Rate of Fine Powders from Hoppers. Powder Technol. vol. 21, pp. 245–261.

    Article  Google Scholar 

  • Staub, F. W. 1980, Steady-State and Transient Gas-Solids Flow Characteristics in Vertical Transport Lines. Powder Technol. vol. 26, pp. 147–159.

    Article  CAS  Google Scholar 

  • Stermerding, S., J. H. de Groot, and G. M. J. Kuypers 1963, Proc. Fluidization Symposium Society of Chemical Industries,London.

    Google Scholar 

  • Streat, M., and K. C. Wilson 1979, Comment on Moving-Bed Solids Flow between Two Fluidized Beds. Powder Technol. vol. 24, pp. 271–272.

    Article  Google Scholar 

  • Tanaka, I., M. Yamaguchi, and H. Shinohara 1978a, Region of Stable Operation in Multistage Fluidized Beds with Downcomer Equipped with an Orifice. Kagaku Kogaku Ronbunshu, vol. 4, no. 3, pp. 317–319.

    Article  CAS  Google Scholar 

  • Tanaka, I., M. Yamaguchi, and H. Shinohara 1978b ), Region of Stable Operation in Multistage Fluidized Bed with Downcomer–The Case of a Downcomer with no Orifice. Kagaku Kogaku Ronbunshu vol. 4, no. 3, pp. 320–322.

    Article  CAS  Google Scholar 

  • Teo, C. S., and L. S. Leung 1982, Standpipe Flow–The Current Status and Future Applications. J. Pipelines vol. 2, pp. 187–197.

    Google Scholar 

  • Teo, C. S., P. J. Jones, and L. S. Leung 1980, Effect of Start-Up Conditions on Flow of a Powder Down a Standpipe. Proceedings of Eighth National Chemical Engineering Conference (Chemeca 80), Inst. of Engineers, Australia, pp. 119–123.

    Google Scholar 

  • Trees, J. 1962, A Practical Investigation of the Flow of Particulate Solids through Sloping Pipes. Trans. Inst. Chem. Eng. vol. 40, pp. 286–296.

    CAS  Google Scholar 

  • Wallis, G. B. 1969, One-Dimensional Two-Phase Flow. New York: McGraw-Hill, pp. 93–94

    Google Scholar 

  • Walters, J. K. 1973, A Theoretical Analysis of Stresses in Silos with Vertical Walls. Chem. Eng. Sci. vol. 28, pp. 13–21.

    Article  CAS  Google Scholar 

  • Wiles, R. J., and L. S. Leung 1972, On Vertical Pneumatic Conveying. Proc. 1st Pacific Chemical Engineering Conference, Part II, Society of Chemical Engineers, Japan, pp. 40–46.

    Google Scholar 

  • Wilson, K. C., M. Streat, and R. A. Bantin 1973, Slip Model Correlation of Dense Two-Phase Flow. Proc. 2nd int. Conf. on Hydraulic Transport of Solids, BHRA Fluid Engineering, pp. 1–10

    Google Scholar 

  • Yang, W. C. 1973, Estimating the Particle Velocities in Vertical Pneumatic Conveying Lines. Ind. Eng. Chem. Fund. vol. 12, pp. 349–352

    Google Scholar 

  • Yang, W. C. 1976, A Unified Theory in Dilute-Phase Pneumatic Transport. Paper presented at Int. Powder and Bulk Solids Handling and Processing Conference, Chicago.

    Google Scholar 

  • Yang, W. C., and D. L. Keairns 1976, in Fluidization Technology, vol. 2, D. L. Keairns, J. F. Davidson, M. A. Bergounon and

    Google Scholar 

  • J. M. Matsen eds., Washington D. C.: Hemisphere, pp. 51–64.

    Google Scholar 

  • Yerushalmi, J., D. H. Turner, and A. M. Squires 1976, The Fast Fluidized Bed. Ind. Eng. Chem. Process Des. Dev. vol. 15, pp. 47–53.

    Article  CAS  Google Scholar 

  • Yoon, S M., and D. Kunii 1973, Gas Flow and Pressure Drop through Moving Beds. Ind. Eng. Chem. Process Des. Dev vol. 9, pp. 559–566.

    Google Scholar 

  • Yousfi, Y. and G. Gau 1974, Aerodynamics of Vertical Conveying of Gas-Solid Suspensions I and II. Chem. Eng. Sci. vol. 29, pp. 1939–1954.

    Article  CAS  Google Scholar 

  • Yuasa, Y., and H. Kuno 1972, Effects of Efflux Tube on Flow of Glass Beads from a Hopper. Powder Technol. vol. 6, pp. 97–104.

    Article  Google Scholar 

  • Zenz, F. A. 1953, Pet. Refiner vol. 32, pp, 123–131.

    Google Scholar 

  • Zenz. F. A. 1976, Fluidi:zation Technology, vol. II, D. L. Keairns et al., eds. Washington, D.C.: Hemisphere, pp. 239–252.

    Google Scholar 

  • Zenz, F. A., and D. F. Othmer 1960, Fluidization and Fluid-Particle Systems, New York: Reinhold.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leung, L.S., Jones, P.J. (1986). Flow of Gas-Solid Mixtures through Standpipes and Valves. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds) Multiphase Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01657-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01657-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01659-6

  • Online ISBN: 978-3-662-01657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics