Skip to main content

A Comprehensive Examination of Heat Transfer Correlations Suitable for Reactor Safety Analysis

  • Chapter
Multiphase Science and Technology

Abstract

Fuel sheath temperatures in water-cooled nuclear reactors are usually near the saturation temperature of water. However, during an accidental increase in power, or a decrease in flow and pressure, deterioration in heat transfer is possible. It occurs when the surface temperature increases to such a high level that the heated surface can no longer support continuous liquid contact. This phenomenon is usually referred to as the boiling crisis (or dryout) and the corresponding heat flux as the critical heat flux (or CHF). The boiling crisis is characterized by either a sudden rise in surface temperature, caused by the heated surface being covered by a stable vapor film (film boiling), or by small surface temperature spikes, corresponding to the appearance and disappearance of dry patches (transition boiling).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addoms, J. N. 1948, Heat Transfer at High Rates to Water Boiling Outside Cylinders, D.Sc. thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Andersen, J. G. M. 1977, Low Flow Film Boiling Heat Transfer on Vertical Surfaces I. Theoretical Model, AIChE Symp. Ser. vol. 73, no. 73, pp. 2–6.

    Google Scholar 

  • Bailey, N. A. 1972, The Interaction of Droplet and Forced Convection in Post-Dryout Heat Transfer at High Subcritical Pressures, European Two-Phase Flow Group Meeting, Rome.

    Google Scholar 

  • Barnett, P. G. 1966, A Correlation for Burnout Data for Uniformly Heated Annuli and Its Use for Predicting Burnout in Uniformly Heated Rod Bundles, Atomic Energy Establishment Winfrith Report AEEW-R-463.

    Google Scholar 

  • Barnett, P. G. 1968, A Comparison of the Accuracy of Some Correlations for Burnout Annuli and Rod Bundles, Atomic Energy Establishment Winfrith Report AEEW-R-558.

    Google Scholar 

  • Baumeister, K. J., and F. F. Simon 1973, Leidenfrost Temperature–Its Correlation for Liquid Metals, Cryogens, Hydrocarbons, and Water, J. Heat Transfer vol. 95, pp. 166–173.

    CAS  Google Scholar 

  • Becker, K. M. 1967, An Analytical and Experimental Study of Burnout Conditions in Vertical Round Ducts, Nukeonik vol. 9, no. 6, pp. 257–270.

    CAS  Google Scholar 

  • Becker, K.M., and G. Hernborg 1964, Measurements of the Effects of Spacers on the Burnout Conditions for Flow of Boiling Water in a Vertical Annulus and a Vertical 7-Rod Cluster, Atom Energi (Stockholm) Report AE-165.

    Google Scholar 

  • Becker, K. M., J. Hager, and D. Djursing 1972, Burnout Correlations in Simple Geometries: Most Recent Assessments, Invited lecture presented at the Seminar of Two-Phase Flow Thermohydraulics, Rome, Italy, Report KTH-NEL-18.

    Google Scholar 

  • Becker, K. M., J. Flinta, and O. Nylund 1967, Dynamic and Static Burnout Studies for the Full-Scale Marviken Fuel Elements in the 8-MW Loop FRIGG, Proceedings of Symposium on Two-Phase Flow Dynamics, Eindhoven, Netherlands, vol. 1, pp. 461–474. Published by Euratom, Brussels.

    Google Scholar 

  • Bell, K. J. 1967, The Leidenfrost Phenomenon: A Survey, Chem. Eng. Frog. Symp. Ser. vol. 63, no. 79, pp. 73–82.

    CAS  Google Scholar 

  • Bennett, A. W., H. A. Kearsey, and R. K. F. Keeys 1964, Heat Transfer to Mixtures of High-Pressure Steam and Water in an Annulus, Part VI, Atomic Energy Research Establishment Report AERE-R-4352.

    Google Scholar 

  • Bennett, A. W., G. F. Hewitt, H. A. Kearsey, and R. K. F. Keeys 1966, The Wetting of Hot Surfaces by Water in a Steam Environment at High Pressures, Atomic Energy Research Establishment Report AERE-R-5146.

    Google Scholar 

  • Bennett, A. W., G. F. Hewitt, H. A. Kearsey, and R. K. F. Keeys 1967, Heat Transfer to Steam-Water Mixtures Flowing in Uniformly Heated Tubes in Which the Critical Heat Flux Has Been Exceeded, Atomic Energy Research Establishment Report AERE-R-5373.

    Google Scholar 

  • Berenson, P. J. 1960, Transition Boiling Heat Transfer from a Horizontal Surface, Massachusetts Institute of Technology MIT Technical Report No. 17.

    Google Scholar 

  • Berenson, P. J. 1961, Film Boiling Heat Transfer from a Horizontal Surface, J. Seat Transfer vol. 83, pp. 351–358.

    CAS  Google Scholar 

  • Bergles, A. E. 1977, Burnout in Boiling Heat Transfer. II. Subcooled and Low-Quality Forced Convective Systems, Vuoi. Saf. vol. 18, no. 2, pp. 154–167.

    CAS  Google Scholar 

  • Bergles, A. E. 1979, Burnout in Boiling Heat Transfer. III. High-Quality Forced Convective Systems, Suci. Saf. vol. 20, no. 6, pp. 671–689.

    CAS  Google Scholar 

  • Bertoletti, S. 1961, Heat Transfer and Pressure Drop with Steam-Water Spray, Centro Informazioni - Studi Esperienze, Milano CISE R-36.

    Google Scholar 

  • Bertoletti, S. 1964, Heat Transfer to Steam-Water Mixtures, Centro Informazioni - Studi Esperienze, Milano CISE R-78.

    Google Scholar 

  • Blasi, L., G. C. Clerici, S. Garribba, R. Sala, and A. Tozzi 1967, Studies on Burnout: Part 3, Energ. Nucl. Milan vol. 14, pp. 530–536.

    Google Scholar 

  • Bishop, A. A., L. E. Efferding, and L. S. Tong 1962, A Review of Heat Transfer and Fluid Flow of Water in the Supercritical Region and during “Once-Thru” Operation, Westinghouse Canada Atomic Power Report WCAP-2040.

    Google Scholar 

  • Bishop, A. A., R. O. Sandberg, and L. S. Tong 1964, High-temperature Supercritical Pressure Water Loop. V. Forced Convection Heat Transfer to Water after the Critical Heat Flux at High Supercritical Pressures, Westinghouse Canada Atomic Power Report WCAP-2056 (Part 5 )

    Google Scholar 

  • Bishop, A. A., R. O. Sandberg, and L. S. Tong 1965, Forced Convection Heat Transfer at High Pressure after the Critical Heat Flux, American Society of Mechanical Engineering ASME-65-HT-31.

    Google Scholar 

  • Bjornard, T. A., and P. Griffith 1977, PWR Blowdown Heat Transfer, Proceedings of ASME Topical Meeting on Thermal and Hydraulic Aspects of Nuclear Reactor Safety, Atlanta, Georgia, vol. 1, pp. 17–41, O. C. Jones, Jr. and S. G. Bankoff, eds. Published by ASME, New York.

    Google Scholar 

  • Bowring, R. W. 1972, A Simple but Accurate Round Tube; Uniform Heat Flux Dryout Correlation over the Pressure Range 0.7–17.0 MN/m2, Atomic Energy Establishment Winfrith Report AEEW-R-789.

    Google Scholar 

  • Bowring, R. W. 1977, A New Mixed-Flow Cluster Dryout Correlation for Pressures in the Range 0.6–15.5 MN/m2 for Use in Transient Blowdown Code, Proceedings of IME Meeting on Reactor Safety, Manchester, Paper C217 /77.

    Google Scholar 

  • Bradfield, W. S. 1967, On the Effect of Subcooling on the Wall Superheat in Pool Boiling, J. Heat Transfer vol. 89, pp. 269–270.

    CAS  Google Scholar 

  • Brevi, R., M. Cumo, A. Palmieri, and D. Pitimada 1969, Heat Transfer Coefficient in Post Dryout Two-Phase Mixtures, European Two-Phase Group Meeting, Karlsruhe.

    Google Scholar 

  • Bromley, L. A. 1950, Heat Transfer in Stable Film Boiling, Chem. Eng. Prog. vol. 46, pp. 221–227.

    CAS  Google Scholar 

  • Bromley, L. A. 1952, Effect of Heat Capacity on Condensate, Ind. Eng. Chem. vol. 44, pp. 2966–2969.

    CAS  Google Scholar 

  • Bromley, L. A., N. R. LeRoy, and J. A. Robbers 1953, Heat Transfer in Forced Convective Film Boiling, Ind. Eng. Chem. vol. 45, pp. 2639–2646.

    CAS  Google Scholar 

  • Butterworth, D., and R. G. Owen 1975, The Quenching of Hot Surfaces by Top and Bottom Flooding: A Review, Atomic Energy Research Establishment AERE-R-7992.

    Google Scholar 

  • Butterworth, D., and R. A. W. Shock 1975, The Design of Vertical Thermosyphon Reboilers, Atomic Energy Research Establishment AERE-R-8053.

    Google Scholar 

  • Chan, K. C., and G. Yadigaroglu 1980, Calculations of Film Boiling Heat Transfer above the Quench Front During Reflooding, Experimental and Analytical Modelling of EWE Safety Experiment, American Society of Mechanical Engineers ASME Publ. HTD-Vol. 7.

    Google Scholar 

  • Chen, J. C. 1963, A Correlation for Boiling Heat Transfer to Saturated Fluids in Convective Flow, American Society of Mechanical Engineers ASME 63-HT-34.

    Google Scholar 

  • Chen, J. C., F. T. Ozkaynak, and R. K. Sundaram 1979, Vapor Heat Transfer in the Post-CHF Region Including the Effect of Thermodynamic Nonequilibrium, Nucl. Eng. Des. vol. 51, pp. 143–155.

    Google Scholar 

  • Cheng, S. C., W. W. L. Ng, and K. T. Heng 1978, Measurements of Boiling Curves of Subcooled Water Under Forced Convective Conditions, Int. J. Heat Mass Transfer vol. 21, pp. 1385–1392.

    CAS  Google Scholar 

  • Cheng, S. C., K. T. Poon, P. Lau, and W. W. L. Ng 1981, Transition Boiling Heat Transfer in Forced Vertical Flow (Measurements of Quench Temperature), University of Ottawa 20th Quarterly Progress Report, Oct.–Dec. 1981, Argonne National Laboratories Contract 31–109–38–5503.

    Google Scholar 

  • Chi, J. W. H. 1967, Slug Flow and Film Boiling of Hydrogen, J. Spacecr. Rockets vol. 4, pp. 1329–1332.

    CAS  Google Scholar 

  • Cldment, P., R. Deruaz, M. Lambert, and P. Pic 1979, Refroidissement de sêcours des reacteurs à eau legère; Essais de renoyage en gêometrie tubulaire, Centre D’Etudes Nuclêaires de Grenoble Report TT-156.

    Google Scholar 

  • Cleric?, G. C., S. Garriba, R. Sala, and A. Tozzi 1965, A Catalogue of Burnout Correlations for Forced Convection in the Quality Region, Euratom Report EUR-3300.e.

    Google Scholar 

  • Colburn, A. P. 1933, Method of Correlating Forced Convective Heat Transfer Data and a Comparison with Fluid Friction, Trans. Am. Inst. Chem. Eng, vol. 29, pp. 174–210.

    CAS  Google Scholar 

  • Collier, J. G. 1962, Heat Transfer and Fluid Dynamic Research as Applied to Fog-Cooled Reactors, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-1631.

    Google Scholar 

  • Collier, J. G. 1980, Convective Boiling and Condensation, Second Edition, London: McGraw-Hill.

    Google Scholar 

  • Condie, K. G., and S. J. Bengston 1978, Development of the MOD 7 CHF Correlation, E.G.andG. Idaho Inc., Idaho Falls, Idaho, Report PN-181–78.

    Google Scholar 

  • Cooper, M. G. 1982, Correlations for Nucleate Boiling–Formulation Using Reduced Properties, Physico Chemical Hydrodynamics vol. 3, no. 2, pp. 89–111.

    CAS  Google Scholar 

  • Curvo, M., and G. C. Urbani 1971, Anomalies in Post-Dryout Heat Transfer at High Pressures, Trans. Am. Nucl. Soc. vol. 14, pp. 245–246.

    Google Scholar 

  • Curvo, M., and G. C. Urbani 1974, Post-Burnout Heat Transfer (Attainable Precision Limits of the Measured Coefficient), Comitato Nazionale Energia Nucleare CNEN/RT/ING(74)24

    Google Scholar 

  • Dangler, C. E., and J. N. Addoms 1956, Heat Transfer Mechanisms for Vaporization of Water in a Vertical Tube, Chem, Eng. Frog, Symp. Ser. vol. 52, no. 18, pp. 95–103.

    Google Scholar 

  • Dhir, V. K., R. B. Duffey, and I. Cotton 1981, Quenching Studies on a Zircaloy Rod Bundle, J. Heat Transfer vol. 103, pp. 293–299.

    CAS  Google Scholar 

  • Dittus, F. W., and L. M. K. Boelter 1930, Heat Transfer in Automobile Radiators of the Tubular Type, University of California Publications, vol. 2, pp. 443–461.

    Google Scholar 

  • Doroshchuk, V. E., and F. P. Lantsman 1970, Selecting Magnitudes of Critical Heat Fluxes with Water Boiling in Vertical Uniformly Heated Tubes, Therm. Eng. (USSR) vol. 17, no. 12, pp. 18–21.

    Google Scholar 

  • Doroshchuk, V. E., L. L. Levitan, and F. P. Lantzman 1975, Investigations into Burnout in Uniformly Heated Tubes, American Society of Mechanical Engineers ASME 75-WA/HT-22.

    Google Scholar 

  • Dougall, R S., and W. M. Rohsenow 1963, Film Boiling on the Inside of Vertical Tubes with Upward Flow of the Fluid at Low Qualities, Massachusetts Institute of Technology Report No. 9079–26.

    Google Scholar 

  • Elias, E., and P. Chambré 1981, Inverted Annular Film Boiling Heat Transfer from Vertical Surfaces, Huai. Eng. Des. vol. 64, pp. 249–257.

    Google Scholar 

  • Ellion, M. E. 1954, A Study of the Mechanism of Boiling Heat Transfer, California Institute of Technology Report JPL-MEMO-20–88.

    Google Scholar 

  • Era, A., G. P. Gaspari, A. Hassid, A. Milani, and R. Zavattarelli 1967, Heat Transfer Data in the Liquid Deficient Region for Steam-Water Mixtures at 70 kg/cm2 Flowing in Tubular and Annular Conduits, Centro Informazioni-Studi Esperienze, Milano CISE R-184.

    Google Scholar 

  • Forster, K., and R. Greif 1959, Heat Transfer to a Boiling Liquid; Mechanism and Correlation, J. Heat Transfer vol. 81C, pp. 43–53.

    Google Scholar 

  • Fung, K. K. 1977, Forced Convective Transition Boiling, M.Sc. thesis, University of Toronto.

    Google Scholar 

  • Fung, K. K. 1978, Post-CHF Heat Transfer during Steady-State and Transient Conditions, Report NUREG/CR-0195, Argonne National Laboratories ANL-78–55.

    Google Scholar 

  • Fung, K. K. 1981, Subcooled and Low-Quality Film Boiling of Water in Vertical Flow at Atmospheric Pressure, Ph.D. thesis, University of Ottawa.

    Google Scholar 

  • Fung, K. K., S. R. M. Gardiner, and D. C. Groeneveld 1979, Subcooled and Low-Quality Flow Film Boiling of Water at Atmospheric Pressure, nucZ. Eng. Des. vol. 55, pp. 51–57.

    CAS  Google Scholar 

  • Gasc, B. 1966, Repartition des coefficients d’echange dans une grappe, EAES Heat Transfer Symposium on Superheated Steam or Gas, Berne, Aug. 31-Sept. 3.

    Google Scholar 

  • Gaspari, G. P., A. Hassid, R. Ravetta, L. Rubiera 1968, Heat Transfer Crisis and Pressure Drop with Steam-Water Mixtures: Further Experimental Data with Seven-Rod Bundles, Centro Informazioni Informazïoni-Studi Esperienze, Milano Report R-208.

    Google Scholar 

  • Gaspari, G. P., A Hassid, and C. Vanoli 1969, An Experimental Investigation on the Influence of Radial Power Distribution on Critical Heat Flux in a Nuclear Rod Cluster, European Two-Phase Flow Group Meeting, Karlsruhe.

    Google Scholar 

  • Gaspari, G. P., R. Ravetta, L. Rubiera, G. Vanoli 1970, Heat Transfer Crisis and Pressure Drop Measurements with Steam-Water Mixtures in Nineteen-Rod Clusters, Centro Informazioni-Studi Esperienze, Milano Report R-294.

    Google Scholar 

  • Gellerstedt, J. S., R. A. Lee, W. J. Oberjohn, R. H. Wilson, and L. J. Stanek 1969, Correlation of Critical Heat Flux in a Bundle Cooled by Pressurized Water, Two-Phase Flow and Heat Transfer in Rod Bundles, American Society of Mechanical Engineers Winter Annual Meeting, Los Angeles, pp. 63–71.

    Google Scholar 

  • Ginoux, J. J. 1978, Two-Phase Flows and Heat Transfer with Application to Nuclear Reactor Design Problems, New York: McGraw-Hill, pp. 375–381.

    Google Scholar 

  • Griffel, J., and C. F. Bonilla 1965, Forced Convection Boiling Burnout for Water in Uniformly Heated Tubular Test Sections, Huai. Struct. Eng. vol. 2, pp. 1–35.

    Google Scholar 

  • Griffiths, P., J. F. Pearson, and R. J. Lepkowski 1977, Critical Heat Flux during a Loss-of-Coolant Accident, Nucl. Saf. vol. 18, no. 3, pp. 298–305.

    Google Scholar 

  • Groeneveld, D. C. 1969, An Investigation of Heat Transfer in the Liquid-Deficient Regime, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-3281.

    Google Scholar 

  • Groeneveld, D. C. 1972, The Thermal Behaviour of a Heated Surface at and Beyond Dryout, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-4309.

    Google Scholar 

  • Groeneveld, D. C. 1973, Forced Convective Heat Transfer to Superheated Steam in Rod Bundles, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-4450.

    Google Scholar 

  • Groeneveld, D. C. 1975, The Effect of Short Flux Spikes on the Dryout Power, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-4927.

    Google Scholar 

  • Groeneveld, D. C. 1981a, Heat Transfer Phenomena Related to the Boiling Crisis, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-7239.

    Google Scholar 

  • Groeneveld, D. C. 1982, A General CHF Prediction Method for Water Suitable for Reactor Accident Analysis, Centre D’Etudes Nucléaires de Grenoble, Report DRE/STT/SETRE/82–2.

    Google Scholar 

  • Groeneveld, D. C., and A. S. Borodin 1980, Occurrence of Slow Dryout in Forced Convective Flow, Multiphase Transport; Fundamentals and Reactor Safety Applications, Washington, D.C.: Hemisphere, vol, 2, pp. 583–600.

    CAS  Google Scholar 

  • Groeneveld, D. C., and K. K. Fung 1976, Forced Convective Transition Boiling: Review of Literature and Comparison of Predictive Methods, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL5543.

    Google Scholar 

  • Groeneveld, D. C., and G. G. J. Delorme 1976, Predictions of Thermal Nonequilibrium in the Post-Dryout Regime, Nucl. Eng. Des. vol. 36., pp. 17–26.

    Google Scholar 

  • Groeneveld, D. C., and S. R. M. Gardiner 1977, Post-CHF Heat Transfer under Forced Convective Conditions, ASME Symposium on the Thermal and Hydraulic Aspects of Nuclear Reactor Safety, vol. 1, pp. 43–73, 0. C. Jones and S. G. Bankoff, eds.

    Google Scholar 

  • Groeneveld, D. C., and S. R. M. Gardiner 1978, A Method of Obtaining Flow Film Boiling Data for Subcooled Water, Int. J. Heat Mass Transfer vol. 21, pp. 664–665.

    Google Scholar 

  • Groeneveld, D. C. and G. D. McPherson 1973, In-Reactor Post-Dryout Experiments with 36-Element Fuel Bundles, Atomic Energy of Canada Limited, Chalk River Ontario, Report AECL-4705.

    Google Scholar 

  • Groeneveld, D. C., and J. C. Rousseau 1983, CHF and Post-CHF Heat Transfer: An Assessment of Prediction Methods and Recommendations for Reactor Safety Codes, Proceedings NATO Meeting on Advances in Two-Phase Flow and Heat Transfer. vol. I, pp. 209–239, (NATO ASI Series, Series E, No. 63 ), Nijhoff, The Hague.

    Google Scholar 

  • Groeneveld, D. C. and J. C. Stewart 1982, The Minimum Film Boiling Temperature for Water during Film Boiling Collapse, 7th Int. Heat Transfer Conf., Munich.

    Google Scholar 

  • Groeneveld, D. C., and W. W. Yousef 1980, Spacing Devices for Nuclear Fuel Bundles: A Survey of Their Effect on CHF, Post-CHF Heat Transfer, and Pressure Drop, Proceedings of the ANS/ASME/NRC International Topical Meeting on Nuclear Reactor Thermal-Hydraulics, Saratoga Springs, NY, NUREG/CP-0014, vol. 2, pp. 1111–1130.

    Google Scholar 

  • Guglielmini, G., E. Nannei, and C. Pisoni 1978, Comparative Analysis of Heat Transfer Correlations for Forced Convective Boiling, Comitato Nazionale Energia Nucleare RT/ING(78)18.

    Google Scholar 

  • Guglielmini, G., E. Nannei, and C. Pisoni 1980, Survey of Heat Transfer Correlations in Forced Convective Boiling, Wärme und Stoffübertragung vol. 13, pp. 177–185.

    Google Scholar 

  • Hadaller, G., and S. Banerjee 1969, Heat Transfer to Superheated Steam in Round Tubes, Atomic Energy of Canada Limited, Pinawa, Manitoba, Internal Report WDI-147.

    Google Scholar 

  • Heineman, J. B. 1960, An Experimental Investigation of Heat Transfer to Superheated Steam in Round and Rectangular Channels, Argonne National Laboratories ANL-6213.

    Google Scholar 

  • Hench, J. E. 1964, Forced Flow Transition Boiling Experiments in a Two-Rod Test Section at High Pressure, American Society of Mechanical Engineers ASME 64-WA/HT-44.

    Google Scholar 

  • Henry, R. E. 1974, A Correlation for the Minimum Boiling Temperature, AIChE Symp. Ser. vol. 70, no. 138, pp. 81–90.

    Google Scholar 

  • Herkenrath, H., P. Mörk-Mörkenstein, U. Jung and F.-J. Weckermann 1967, Wärmeübergang an Wasser bei Erzwungéner Stromung im Druckbereich von 140 bis 250 bar, Euratom report EUR-3658d.

    Google Scholar 

  • Hewitt, G. F. 1978, Critical Heat Flux in Flow Bailing, Proceedings of Sixth International Heat Transfer Conference, Toronto, Canada, vol. 6, pp. 143–172, Hemisphere Publishing Corp., Washington.

    Google Scholar 

  • Hewitt, G. F., and N. S. Hall-Taylor 1970, Annular Two Phase Flow, Oxford: Pergamon.

    Google Scholar 

  • Hoffman, H. W. 1970, Experimental Studies of the Heat Transfer and Fluid Dynamic Characteristics of Rod-Cluster-Type Nuclear Reactor Fuel Elements, Oak Ridge National Laboratories ORNL-4356, pp. 74118.

    Google Scholar 

  • Howard, P. A. 1976, An Experimental and Analytical Study of the Sputtering Phenomenon, Argonne National Laboratories ANL-76–41.

    Google Scholar 

  • Howard, P. A., J H. Lineman, and M. A. Grolmes 1975, Experimental Study of the Stationary Boiling Front in Liquid Film Cooling of a Vertical Heated Road, CJChE/CSME-75-HT-14, 15th National Heat Transfer Conference, San Francisco.

    Google Scholar 

  • Hsu, Y. Y. 1975, A Tentative Correlation for the Regime of Transition Boiling and Film Boiling During Reflood, Paper presented at the 3rd Water Reactor Safety Review Information Meeting, United States Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Hsu, Y. Y., and W. D. Beckner 1977, Correlation for the Onset of Transient CHF, cited in Tong, L. S., and G. L. Bennett, NRC Water Reactor Safety Research Program, Nucl. Saf. vol. 18, no. 1, pp. 1–44.

    Google Scholar 

  • Iloeje, O. C., D. N. Plummer, W. M. Rohsenow, and P. Griffith 1974, A Study of Wall Rewet and Heat Transfer in Dispersed Vertical Flow, Massachusetts Institute of Technology, Cambridge, MIT Technical Report 72718–92.

    Google Scholar 

  • Ivey, H. J., and D. J. Morris 1962, On the Relevance of the Vapour-Liquid Exchange Mechanism for Subcooled Boiling Heat Transfer at High Pressures, Atomic Energy Establishment Winfrith AEEW-R-137.

    Google Scholar 

  • Janssen, E., F. A. Schraub, R. B. Nixon, B. Matzner, and J. F. Casterline 1969, Sixteen-Rod Heat Flux Investigation, Steam-Water at 600 to 1250 psi, Two-Phase Flow and Heat Transfer in Rod Bundles, American Society of Mechanical Engineering Winter Annual Meeting, pp. 81–88.

    Google Scholar 

  • Jens, W. H., and P. A. Lottes 1951, Analysis of Heat Transfer Burnout, Pressure Drop, and Density Data for High-Pressure Water, Argonne National Laboratories ANL-4627.

    Google Scholar 

  • Jones, O. C., Jr., and N. Zuber 1977, Post-CHF Heat Transfer: A Nonequilibrium Relaxation Model, American Society of Mechanical Engineering ASME 77-HT-79.

    Google Scholar 

  • Kalinin, E. K. 1969, Investigation of the Crisis of Film Boiling in Channels, Two-Phase Flow and Heat Transfer in Rod Bundles, American Society of Mechanical Engineering Winter Annual Meeting, Los Angeles, pp. 89–94.

    Google Scholar 

  • Kalinin, E. K., V. K. Koshkin, S. R. Yarkho, I. I. Berlin,Y. S. Kochelaev, V. V, Kostyuk, A. L. Korolev, and G. N. Sdobnov 1970, Investigation of Film Boiling in Tubes with Subcooled Nitrogen Flow, Fourth International Heat Transfer Conference, B4.5, Paris.

    Google Scholar 

  • Kalinin, E. K., V. K. Koshkin, S. A. Yarkho, I. I. Berlin,V. V. Kostyuk, and Yu. S. Kochelaev 1969, Heat Transfer in Tubes with Rod Regime in the Case of Flow Boiling of a Subcooled Liquid, Cocurrent Gas-Liquid Flow, New York: Plenum, pp. 497–525.

    Google Scholar 

  • Katto, Y 1978, A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes, Int. J. Heat Mass Transfer vol. 21, pp. 1527–1542.

    CAS  Google Scholar 

  • Katto, Y. 1979a, A Generalized Correlation of Critical Heat Flux for the Forced Convection Boiling in Vertical Uniformly Heated Round Tubes–A Supplementary Report, Int. J. Heat Mass Transfer vol. 22, pp. 783–794.

    Google Scholar 

  • Katto, Y. 1979b, An Analysis of the Effect of Inlet Subcooling on Critical Heat Flux of Forced Convection Boiling in Vertical Uniformly Heated Tubes, Int. J. Heat Mass Transfer vol. 22, pp. 1567–1575.

    Google Scholar 

  • Katto, Y. 1980, General Features of CHF of Forced Convection Boiling in Uniformly Heated Vertical Tubes with Zero Inlet Subcooling, Int. J. Heat Mass Transfer vol. 23, pp. 493–504.

    Google Scholar 

  • Kaufman, J. M. 1976, Post-Critical Heat Flux Heat Transfer to Water in a Vertical Tube, M.Sc. thesis, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Kidd, G. J., W. J. Stelzman, and H. W. Hoffman 1968, The Temperature Structure and Heat Transfer Characteristics of an Electrically Heated Model of a Seven-Rod Cluster Fuel Element, American Society of Mechanical Engineering 68-WA/HT-33.

    Google Scholar 

  • Kim, A. K., and Y. Lee 1979, A Correlation of Rewetting Temperature, Lett. Heat Mass Transfer vol. 6, pp. 117–123.

    CAS  Google Scholar 

  • Kobori, T. 1976, Critical Heat Flux Measurements in a Full-Scale Rod Cluster, Bull. JSME vol. 19, no. 131, pp. 540–546.

    Google Scholar 

  • Koram, K. K., and E. M. Sparrow 1978, Turbulent Heat Transfer Downstream of an Unsymmetric Blockage in a Tube, J. Heat Transfer vol. 100, pp. 588–594.

    Google Scholar 

  • Krall, K. M., and E. M. Sparrow 1966, Turbulent Heat Transfer in the Separated, Reattached, and Redevelopment Regions of a Circular Tube, J. Heat Transfer vol. 88, pp. 131–136.

    CAS  Google Scholar 

  • Kutateladze, S. S., and V. M. Borishanskii 1966, A Concise Encyclopedia of Heat Transfer, Oxford: Pergamon.

    Google Scholar 

  • Laperri.ere, A. 1983, An Analytical and Experimental Investigation of Forced Convective Film Boiling, M.A.Sc. thesis, Department of Mechanical Engineering, University of Ottawa.

    Google Scholar 

  • Lauer, H., and W. Hufschmidt 1976, Heat Transfer and Surface Rewet During Quenching, Two-Phase Flow and Heat Transfer, vol. III (proceedings of NATO Advanced Study Institute, Istanbul, Turkey), Washington, D.C.: Hemisphere, pp. 1309–1326.

    Google Scholar 

  • Laverty, W. F., and W. M. Rohsenow 1967, Film Boiling of Saturated Liquid Nitrogen Flowing in a Vertical Tube, J. Heat Transfer vol. 89, pp. 90–98.

    CAS  Google Scholar 

  • Lee, D. H. 1970, Studies of Heat Transfer and Pressure Drop Relevant to Subcritical Once-Through Evaporators, IAEA-SM-130/56,IAEA Symposium on Progress in Sodium-Cooled Fast-Reactor Engineering, Monaco, published by International Atomic Energy Authority, Vienna.

    Google Scholar 

  • Lee, Y., W. J. Chen, and D. C. Groeneveld 1978, Rewetting of Very Hot Vertical and Horizontal Channels by Flooding, Proceedings of 6th Int. Heat Transfer Conference, Toronto, Hemisphere Publishing Corp., Washington, D.C., vol. 5, pp. 95–100.

    Google Scholar 

  • Leung, J. C. M. 1978, Critical Heat Flux under Transient Conditions: A Literature Survey, Argonne National Laboratories Report NUREG/CR-0056 Argonne National Laboratories 78–39.

    Google Scholar 

  • Leung, J. C. M. 1980, Transient Critical Heat Flux and Blowdown Heat Transfer Studies, Argonne National Laboratories Report NUREG/CR-1559 Argonne National Laboratories 80–53.

    Google Scholar 

  • Levitan, L L., and F. P. Lantsman 1977, Critical Heat Fluxes in Internally Heated Annular Channels, Therm. Eng. (USSR) vol. 24, no. 4, pp. 16–21.

    Google Scholar 

  • Macbeth, R. V. 1963, Burnout Analysis, Part 4: Application of a Local Conditions Hypothesis to World Data for Uniformly Heated Tubes and Rectangular Channels, Atomic Energy Establishment Winfrith AEEW-R-267.

    Google Scholar 

  • Mattson, R. J., K. G. Condie, S. J. Bengston, and C. F. Obenchain 1974, Regression Analysis of Post-CHF Flow Boiling Data, Fifth Int. Heat Transfer Conf. vol. IV, B3.8, Tokyo.

    Google Scholar 

  • McAdams, W. H. 1954, Heat Transmission, New York: McGraw-Hill.

    Google Scholar 

  • McAdams, W. H., W. E. Kennel, C. S. Minden, R. Carl, P. M. Picornell, and J. E. Dew 1949, Heat Transfer at High Rates to Water with Surface Boiling, Inst. Chem, Eng., vol. 41, pp. 1945–1955.

    CAS  Google Scholar 

  • McDonough, J. B., W. Milich, and E. C. King 1961, An Experimental Study of Partial Film Boiling Region with Water at Elevated Pressures in a Round Vertical Tube, Chem. Eng. Prop. Symp. Ser. vol. 57, no. 32, pp. 197–208.

    Google Scholar 

  • McPherson, G. D. 1971, The Use of Enthalpy Imbalance in Evaluating the Dryout Performance of Fuel Bundles, Atomic Energy of Canada Limited, Chalk River, Ontario, Report AECL-3968.

    Google Scholar 

  • Merte, H., and J. A. Clark 1961, Boiling Heat Transfer Data for Liquid Nitrogen at Standard and Near-Zero Gravity, Adv. Cryog. Eng. vol. 7, pp. 246–250.

    Google Scholar 

  • Miropol’skiy, Z. L. 1963, Heat Transfer in Film Boiling of a Steam-Water Mixture in Steam Generating Tubes, Teploenergetika vol. 10, pp. 49–53.

    Google Scholar 

  • Mueller, R. E. 1967, Film Boiling Heat Transfer Measurements in a Tubular Test Section, Euratom Atomic Energy Commission EURAEC-1871/ General Electric Atomic Power GEAP-5423.

    Google Scholar 

  • Nelson, R. A. 1980, Forced Convective Post-CHF Heat Transfer and Quenching, American Society of Mechanical Engineering Winter Annual Meeting, 80-WA/HT-69, Chicago.

    Google Scholar 

  • Nijhawan, S, J. C. Chen, R. K. Sundaram, and E. J. London 1980, Measurement of Vapour Superheat in Post-Critical Heat Flux Boiling, J. Beat Transfer vol. 102, pp. 450–470.

    Google Scholar 

  • Nishio, S., and M. Hirata 1978, Direct-Contact Phenomenon between a Liquid Droplet and High-Temperature Solid Surface, 6th Int. Heat Transfer Conference vol. I, pp. 245–250, Toronto.

    Google Scholar 

  • Nobel, L. 1970, The Heat Transfer Coefficient as a Function of Steam Quality for High-Pressure Once-Through Flow Boiling, with Determination of the Transition Points between the Regions of Particular Heat Transfer, Euratom report EUR-4561.

    Google Scholar 

  • Norman, W. S., and V. McIntyre 1960, Heat Transfer to a Liquid Film on a Vertical Surface, Trans. Inst. Chem. Eng. vol. 38, pp. 301–307.

    CAS  Google Scholar 

  • Peterson, W. C., M. M. About Fetouh, and M. G. Zaalouk 1973, Boiling Curve Measurements from a Controlled Forced Convection Process, Proc. Brit. Nucl Eng. Society, Conference on Boiler Dynamics and Control in Nuclear Power Stations, London.

    Google Scholar 

  • Plummer, D. N., P. Griffith, and W. M. Rohsenow 1976, Post-Critical Heat Transfer to Flowing Liquid in a Vertical Tube, 16th National Heat Transfer Conference, 76-CSME/ChE-13, St. Louis, Missouri.

    Google Scholar 

  • Plummer, D. N., O. C. Iloeje, P. Griffith, and W. M. Rohsenow 1973, A Study of Post-Critical Heat Flux Heat Transfer in a Forced Convection System, Massachusetts Institute of Technology Report No. 73645–80

    Google Scholar 

  • Polomik, E. E. 1967, Transition Boiling, Heat Transfer Program,Final Summary Report on Program for Feb. 63-Oct. 67, General Electric Atomic Power Report 5563.

    Google Scholar 

  • Polemik, E. E., S. Levy, and S. G. Sawochka 1961, Heat Transfer Coefficients with Annular Flow during Once-Through Boiling of Water to 100% Quality at 800, 1000, and 1400 psi, General Electric Atomic Power Report 3703.

    Google Scholar 

  • Quinn, E. P. 1965, Forced Flow Transition Boiling Heat Transfer from Smooth and Finned Surfaces, General Electric Atomic Power Report 4786.

    Google Scholar 

  • Quinn, E. P. 1966, Physical Model of Heat Transfer Beyond the Critical Heat Flux, General Electric Atomic Power Report 5093.

    Google Scholar 

  • Ragheb, H. S., S. C. Cheng, and D. C. Groeneveld 1981, Observations in Transition Boiling of Subcooled Water under Forced Convective Conditions Int. J. Heat Mass Transfer vol. 24, no. 7, pp. 1127–1137.

    Google Scholar 

  • Ralph, J. C., S. Sanderson, and J. A. Ward 1977, Post-Dryout Heat Transfer under Low-Flow and Low-Quality Conditions, American Society of Mechanical Engineering Winter Annual Meeting, Atlanta, Georgia.

    Google Scholar 

  • Ramu, K,, and J. Weisman 1974, A Method for the Correlation of Transition Boiling Heat Transfer Data, Proceedings of the Fifth International Heat Transfer Conference, Tokyo, vol. IV, B4. 4.

    Google Scholar 

  • Rohsenow, W. M. 1952, A Method of Correlating Heat Transfer Data for Surface Boiling Liquids, Trans. American Soc. of Mech. Eng. vol. 74, p. 969.

    CAS  Google Scholar 

  • Rohsenow, W. M., and H. Choi 1961, Heat, Mass, and Momentum Transfer, Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Rohsenow, W. M., and J, P. Hartnett 1973, Handbook of Heat Transfer, New York: McGraw-Hill.

    Google Scholar 

  • Saha, P. 1980, A Nonequilibrium Heat Transfer Model for Dispersed Droplet Post-Dryout Regime, Int. J. Heat Mass Transfer vol. 23, pp. 438–492.

    Google Scholar 

  • Schmidt, K. R. 1960, Thermodynamic Investigations of Highly Loaded Boiler Heating Surfaces, Atomic Energy of Canada report AEC-TR-4033.

    Google Scholar 

  • Schrock, V. E., and L. M. Grossman 1959, Forced Convection Boiling Studies; Final Report on Forced Convection Vaporization Project, USAEC Report Technical Information Department 14632.

    Google Scholar 

  • Shah, M. M. 1976, A New Correlation for Heat Transfer during Boiling Flow through Pipes, ASHRAE Trans. vol. 82, Part 2, pp. 66–86.

    Google Scholar 

  • Shah, M. M. 1977, A General Correlation for Heat Transfer during Subcooled Boiling in Pipes, ASHRAE Trans. vol. 83, Part 1, pp. 202–217.

    Google Scholar 

  • Shah, M. M. 1979, A Generalized Graphical Method for Predicting CHF in Uniformly Heated Vertical Tubes, Int. J. Heat Mass Transfer vol. 22, pp. 557–568.

    Google Scholar 

  • Shah, M. M. 1980, A General Predictive Technique for Heat Transfer during Saturated Film Boiling in Tubes, Heat Transfer Eng. vol. 2, pp. 51–62.

    Google Scholar 

  • Shah, M. M. 1981, Generalized Prediction of Heat Transfer during Two Component Gas-Liquid Flow in Tubes and their Channels, AIChE Symp. Ser. vol. 77, no. 208, pp. 140–151.

    CAS  Google Scholar 

  • Shah, M. M. 1982, CHART Correlation for Saturated Boiling Heat Transfer: Equations and Further Study, ASHRAE _Trans. vol. 88, Part 1, pp. 185–196.

    Google Scholar 

  • Shires, G. L., A. R. Pickering, and R. T. Blacker 1964, Film Cooling of Vertical Fuel Rods, Atomic Energy Research Establishment report AERE-R-343.

    Google Scholar 

  • Sieder, E. N., and G. E. Tate 1936, Heat Transfer and Pressure Drop of Liquids in Tubes, Ind. Eng. Chem. vol. 28, pp. 1429–1436.

    CAS  Google Scholar 

  • Simon, F. F., and R. J. Simoneau 1969, Transition from Film to Nucleate Boiling in Vertical Forced Flow, American Society of Mechanical Engineering report ASME 69-HT-26.

    Google Scholar 

  • Siviour, J. B., and A. J. Ede 1970, Heat Transfer in Subcooled Pool Film Boiling, Fourth Int. Heat Transfer Conf., Paris, B3. 12.

    Google Scholar 

  • Slaughterbeck, D. C., L. J. Ybarrondo, and C. F. Obenchain 1973, Flow Film Boiling Heat Transfer Correlations: A Parametric Study with Data Comparisons, American Society of Mechanical Engineering report ASME 73-HT-50

    Google Scholar 

  • Smolin V. N., and V. K. Polyakov 1978, Coolant Boiling Crisis in Rod Assemblies, Sixth Int. Heat Transfer Conf., Toronto, vol. 5, pp. 47–52.

    Google Scholar 

  • Snoek, C. W. 1972, The Influence of Pressure on the Leidenfrost Point, M.E.Sc. Thesis, The University of Western Ontario.

    Google Scholar 

  • Spiegler, P., J. Hopenfeld, M. Silberberg, C. F. Bumpus, and A. Norman 1963, Onset of Stable Film Boiling and Foam Limit, Int. J. Heat Mass Transfer vol. 6, pp. 987–994.

    CAS  Google Scholar 

  • Stewart, J. C. 1981, Low-Quality Film Boiling at Intermedïate and Elevated Pressures, M.A.Sc. thesis, University of Ottawa.

    Google Scholar 

  • Stewart, J. C., and D. C. Groeneveld 1982, Low-Quality and Subcooled Film Boiling at Elevated Pressures, Nuoi. Eng. Des. vol. 67, pp. 259–272.

    CAS  Google Scholar 

  • Swenson, H. S., J. R. Carver, and G. Szoeke 1961, The Effects of Nucleate Boiling versus Film Boiling on Heat Transfer in Power Boiler Tubes, American Society of Mechanical Engineering report ASME 61-WA-201.

    Google Scholar 

  • Tahir, A., and M. B. Carver 1982, ASSERT and COBRA Predictions of Flow Distribution in Vertical Bundles, CNS/ANS International Conference on Numerical Methods in Nuclear Engineering, Montreal.

    Google Scholar 

  • Thom, J. R. S., W. M. Walker, T. A. Fallon, and G. F. S. Reising 1966, Boiling in Subcooled Water during Flow up Heated Tubes or Annuli, Proc. Inst. Mech. Eng. vol. 180, Part 3C, pp. 226–246.

    Google Scholar 

  • Thompson, T. S. 1973, On the Process of Rewetting a Hot Surface by a Falling Liquid Film,.Nuoi. Eng. Des. vol. 31, pp. 234–245; also Atomic Energy of Canada Limited, Chalk River, Ontario Report AECL-4516.

    Google Scholar 

  • Thompson, T. S. 1974, Rewetting of a Hot Surface, Proceedings 5th Int. Heat Transfer Conf., Tokyo, B3.13; also Atomic Energy of Canada Limited, Report AECL-5060.

    Google Scholar 

  • Todreas, N. E., and W. M. Rohsenow 1965, The Effect of Nonuniform Axial Heat Flux Distribution, Massachusetts Institute of Technology Department of Mechanical Engineering, Report 9843–37.

    Google Scholar 

  • Tolubinskiy, V. I., Y. D. Domashev, A. K. Litoshenko, and A. S. Matorin 1977, Boiling Crisis in Concentric and Eccentric Annuli, Heat Transfer Soy. Res. vol. 9, no. 1, pp. 132–139.

    Google Scholar 

  • Tong, L. S. 1965, Boiling Heat Transfer and Two Phase Flow, New York: Wiley.

    Google Scholar 

  • Tong, L. S. 1967, Prediction of Departure from Nucleate Boiling for an Axially Nonuniform Heat Flux Distribution, J. VucI. Energy vol. 21, pp. 241–248.

    CAS  Google Scholar 

  • Tong, L. S. 1969, Critical Heat Fluxes in Rod Bundles, Two-Phase Flow and Heat Transfer in Rod Bundles, American Society of Mechanical Engineering Winter Annual Meeting, Los Angeles, pp. 31–46.

    Google Scholar 

  • Tong, L. S. 1972a, Boiling Crisis and Critical Heat Flux, United States Atomic Energy Commission Report Technical Information Department 25887.

    Google Scholar 

  • Tong, L. S. 1972b, Heat Transfer Mechanisms in Nucleate and Film Boiling, Nuci. Eng. Des. vol. 21, pp. 1–25.

    Google Scholar 

  • Tong, L. S. 1975, A Phenomenological Study of Critical Heat Flux, American Society of Mechanical Engineering Report ASME 75-HT-68.

    Google Scholar 

  • Tong, L. S. and G. F. Hewitt 1972, Overall Viewpoint of Flow Boiling CHF Mechanisms, American Society of Mechanical Engineering Report ASME 72-HT-54.

    Google Scholar 

  • Tong, L. S, and J. Weisman 1979, Thermal Analysis of Pressurized Water Reactors, Second edition, American Nuclear Society, La Grange Park, Illinois.

    Google Scholar 

  • Tong, L. S., and J. D. Young 1974, A Phenomenological Transition and Film Boiling Heat Transfer Correlation, Fifth Int. Heat Transfer Conf., Tokyo, vol. IV, B3. 9.

    Google Scholar 

  • Weisman, J., and R, W. Bowring 1975, Methods for Detailed Thermal and Hydraulic Analysis of Water-Cooled Reactors, NucZ. Sci. Eng. vol. 57, Pp. 255–276.

    Google Scholar 

  • Whalley, P. B. 1974, The Calculation of Dryout in a Heated Annulus, Atomic Energy Research Establishment report AERE-M-266.

    Google Scholar 

  • Whalley, P. B. 1978, The Calculation of Dryout in a Rod Bundle - A Comparison of Experimental and Calculated Results, Atomic Energy Research Establishment Report AERE-R-8977.

    Google Scholar 

  • Whalley, P. B., P. Hutchinson, and G. F. Hewitt 1975, Prediction of Annular Flow Parameters for Transient Conditions and for Complex Geometries, European Two-Phase Flow Group Meeting, Haifa, Israel.

    Google Scholar 

  • Whalley, P. B., P. Hutchinson, and P. W. James 1978, The Calculation of Critical Heat Flux in Complex Situations Using an Annular Flow Model, 6th Int. Heat Transfer Conf., Toronto, vol. 5, pp. 65–70.

    CAS  Google Scholar 

  • Wright, R, M. 1961, Downflow Forced Convection Boiling of Water in Uniformly Heated Tubes, United States Atomic Energy Commission University of California Radiation Laboratory Report 9744.

    Google Scholar 

  • Yamanouchi, A. 1968, Effect of Core Spray Cooling in Transient State After Loss of Coolant Accident, J. NucZ. Sci. Tech. vol. 5, p. 547.

    Google Scholar 

  • Yao, S. C., and R. E. Henry 1978, An Investigation of the Minimum Film Boiling Temperature on Horizontal Surfaces, J. Heat Transfer vol. 100, pp. 260–267.

    Google Scholar 

  • Yao, S. C., L. E. Hochreiter, and W. J. Leech 1982, Heat Transfer Augmentation in Rod Bundles Near Grid Spacers, J. Heat Transfer vol. 104, pp. 76–81.

    CAS  Google Scholar 

  • Zuber, N., M. Tribus, and J. W. Westwater 1961, The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids, International Developments in Heat Transfer, Part II, No. 27, Int. Heat Transfer Conf., Boulder, Colorado, published by American Society of Mechanical Engineers, New York, pp. 230–236.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Groeneveld, D.C., Snoek, C.W. (1986). A Comprehensive Examination of Heat Transfer Correlations Suitable for Reactor Safety Analysis. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds) Multiphase Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01657-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01657-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01659-6

  • Online ISBN: 978-3-662-01657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics