Skip to main content

A Critical Review of the Flooding Literature

  • Chapter

Abstract

Countercurrent flow of a gas and a liquid in direct contact with each other is, of necessity, gravity dominated. That is, in the absence of electromagnetic force fields, thermocapillary effects, or concentration-capillary effects, countercurrent flow can be sustained only as a result of the difference in the gravitational force per unit volume on the gas and on the liquid. If the gas and liquid are simultaneously introduced into a porous medium or into a vertical or inclined pipe, the gas tends to rise relative to the liquid. If conditions allow complete separation, it is possible to maintain steady countercurrent flow in which the liquid discharges at the bottom while the gas flows out from the top. The countercurrent flow is opposed by interfacial friction between the phases, which always seems to increase monotonically as the relative countercurrent mean velocity of the phases increases. Hence, for a given geometry and liquid-gas pair, there is a maximum relative velocity that can be sustained in countercurrent flow. This point is known as the onset of flooding. Further increases in gas or liquid input ratas result in only partial delivery of the liquid out of the bottom. Eventually, if the gas velocity becomes sufficiently high, none of the liquid is delivered at the bottom, and fully cocurrent upward flow is established. If the liquid is being introduced from an upper plenum, none will penetrate into the pipe or porous medium when this second critical gas velocity is reached.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alekseev, V. P., A. E. Poberezkin, and P. V. Gerasimov 1972, Determination of Flooding Rates in Regular Packings. Feat Transfer Soy. Res., vol. 4, pp. 159–163.

    CAS  Google Scholar 

  • Anshus, B. E., and S. L. Goren 1966, A Method of Getting Approximate Solution to the Orr-Sommerfeld Equation for Flow on a Vertical Wall. AIChE J., vol. 12, pp. 1004–1008.

    Article  CAS  Google Scholar 

  • Bankoff, S. G. 1958, Entrapment of Gas in the Spreading of a Liquid over a Rough Surface. AIChE J., vol. 4, pp. 24–26.

    Article  CAS  Google Scholar 

  • Bankoff, S. G., and S. C. Lee 1983a, A Comparison of Flooding Models for Air-Water and Steam-Water Flow, in Advances in Two-Phase Flow and Heat Transfer, NATO ASI Series E, no. 64, S. Kakac and M. Ishii (eds.), pp. 695–728, Hemisphere Publishing Co., The Hague, Netherlands.

    Google Scholar 

  • Bankoff, S. G., and S. C. Lee 1983b, A Critical Review of the Flooding Literature, NUREG/CR-3060, U.S. Nuclear Regulatory Commission.

    Google Scholar 

  • Bankoff, S. G., R. S. Tankin, M. C. Yuen, and C. L. Hsieh 1981, Countercurrent Flow of Air/Water and Steam/Water through a Horizontal Perforated Platz. Int. J. Heat Mass Transfer, vol. 24, pp. 1381–1395.

    Article  CAS  Google Scholar 

  • Belkin, H. H., A. A. Macleod, C. C. Monrad, and R. E. Rothfus 1959, Turbulent Liquid Flow down Vertical Walls. AIChE J., vol. 5,pp. 245–24. 8.

    Google Scholar 

  • Benjamin, T. B. 1959, Shearing Flow over a Wavy Boundary. J. Fluid Mech., vol. 6, pp. 161–205.

    Article  Google Scholar 

  • Bharathan, D., G. B. Wallis, and H. J. Richter 1978, Air-Water Countercurrent Annular Flow in Vertical Tubes. EPRI NP-786.

    Google Scholar 

  • Bharathan, D., G. B. Wallis, and H, J. Richter 1979, Air-Water Countercurrent Annular Flow. EPRI NP-1165, Electric Power Research Inst., Palo Alto, California.

    Google Scholar 

  • Block, J. A., and C. J. Crowley 1975, Effect of Steam Upflow and Superheated Walls on ECC Delivery in a Simulated Multiloop PWR Geometry. Creare TN-210. Creare, Corp., Hanover, New Hampshire.

    Google Scholar 

  • Cetinbudaklar, A. G., and G. J. Jameson 1969, The Mechanism of Flooding in Vertical Countercurrent Two-Phase Flow. Chem. Eng. Sci., vol. 24, pp. 1669–1680.

    Article  CAS  Google Scholar 

  • Chung, S. K., L. P, Liu, and C. L. Tien 1980, Flooding in Two-Phase Countercurrent Flows. II. Experimental Investigation. Physicochem. Hydrodyn., vol. 1, pp. 209–220.

    CAS  Google Scholar 

  • Clift, R., C. L. Pritchard, and R. M. Nedderman 1966, The Effect of Viscosity on the Flooding Conditions in Wetted Wall Columns. Chem. Eng. Sci., vol. 21, pp. 87–95.

    Article  CAS  Google Scholar 

  • Cohen, L. S., and T. J. Hanratty 1968, Effect of Waves at a Gas-Liquid Interface in a Turbulent Air Flow. J. Fluid Mech., vol. 31, pp. 467–479.

    Article  Google Scholar 

  • Collier, J. G., and G. F. Hewitt 1964, Film Thickness Measurements. AERE-R4684, UKAEA, Harwell, England.

    Google Scholar 

  • Collier, R. P., J. A. Dworak, L. J. Flanigan, J. S. K. Liu, and A. Segev 1979, Steam-Water Mixing and System Hydrodynamics Program. NUREG/CR-1625. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Cook, D. H. 1979, Local Condensation Rates for the Countercurrent Stratified Flow of Steam and Water in a Vertical Channel. M.S. thesis, Northwestern University.

    Google Scholar 

  • Crowley, C. J., J. A. Block, and P. H. Rothe 1976, An Evaluation of Scaling Parameters for ECC Penetration Data, Creare TN-233. Creare Corp., Hanover, New Hampshire.

    Google Scholar 

  • Cudnik, R. A., L. J. Flanigan, and R. S. Denning 1978, Baseline Plenum-Filling Behavior in a 2/15-Scale Model of a Four-Loop PWR. NUREG/CR-0069. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Diehl, J. C., and C. R. Koppany 1969, Flooding Velocity Correlation for Gas-Liquid Counterflow in Vertical Tubes. Chem. Eng. _Frog. Symp. Ser., vol. 65, pp. 77–83.

    CAS  Google Scholar 

  • Dobran, F. 1981, Condensation Heat Transfer and Flooding in a Countercurrent Subcooled Liquid and Saturated Vapor Flow. Thermal-Hydraulics in Nuclear Reactor Technology Symposium, Sun, K. H.,S. C. Yao, P. Marinkovich, and V. K. Dhir, eds., ASME Heat Transfer Div., Publ, HTD, vol. 15.

    Google Scholar 

  • Dulker, A. E., and L. Smith 1979, Two-Phase Interactions in Countercurrent Flow: Studies of the Flooding Mechanism. NUREG/CR0617. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Eichhorn, R. 1980, Dimensionless Correlation of the Hanging Film Phenomenon. J. Fluids Eng., vol. 102 pp. 372–375.

    Article  Google Scholar 

  • English, K. G., W. T. Jones, R. C. Spillers, and V. Orr 1963, Flooding in a Vertical Updraft Partial Condenser. Chem. Eng. Frog., vol. 59, pp. 51–54.

    Google Scholar 

  • Fan, C. K. 1979, Phenomena of Flooding with Condensation. Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Fan, C. K., and V. Schrock 1978, Flooding Phenomenon with Condensation. Trans. Am. Bud. Soc., vol. 32, pp. 380–381

    Google Scholar 

  • Feind, F. 1960, Falling Liquid Films with Countercurrent Air Flow in Vertical Tubes. VDI Forschungsh., vol. 481, p, 26.

    Google Scholar 

  • Gardner, G. C. 1979, Onset of Slugging in Horizontal Ducts. Int. J. Multiphase Flow, vol. 5, pp. 201–209.

    Article  Google Scholar 

  • Grolmes, M. A., G. A. Lambert, and H. K. Fauske 1974, Flooding in Vertical Tubes. I. Mech. Eng. Symposium on Multiphase Flow Systems, Glasgow, Scotland.

    Google Scholar 

  • Hawley, D. L., and G. B. Wallis 1982, Experimental Study of Liquid Film Fraction and Pressure Drop Characteristics in Vertical Countercurrent Annular Flow, EPRI NP-2280. Electric Power Res. Inst., Palo Alto California.

    Google Scholar 

  • Hewitt, G. F. 1977, Influence of End Conditions, Tube Inclination and Physical Properties on Flooding in Gas-Liquid Flows, Report HTFS-RS 222, UKAEA, Harwell, England.

    Google Scholar 

  • Hewitt, G. F., and N. S. Hall-Taylor 1970, Annular Two-Phase Flow. Oxford: Pergamon.

    Google Scholar 

  • Hewitt, G. F., P. M. C. Lacey, and B. Nicholls 1965, Transitions in Film Flow in a Vertical Flow. AERE-R4614, UKAEA, Harwell, England.

    Google Scholar 

  • Hewitt, G. F., and G. B. Wallis 1963, Flooding and Associated Phenomena in Falling Film Flow in a Vertical Tube. AERE-R4022, UKAEA, Harwell, England.

    Google Scholar 

  • Imura, H., H. Kusada, and S. Funatsu 1977, Flooding Velocity in a Countercurrent Annular Two-Phase Flow. Chem. Eng. Sci., vol. 32, pp. 79–87.

    Article  CAS  Google Scholar 

  • Jeffreys, H. 1925, On the Formation of Water Waves by Wind. Proc. Roy. Soc. A., vol. 107, pp. 189–205.

    Article  Google Scholar 

  • Jeffreys, H. 1926, On the Formation of Water Waves by Wind (second paper). Proc. R. Soc. London. Ser. A., vol. 110, pp. 241–247.

    Article  Google Scholar 

  • Kamei, S.,J. Oishi, and T. Okase 1954, Flooding in a Wetted Wall Tower. Them. Eng. (Japanese), vol. 18, pp. 364–368.

    Google Scholar 

  • Kordyban, E. S. 1980, Experimental Study of Aerodynamic Pressure

    Google Scholar 

  • at the Wave Surface in Two-Phase Flow. Symposium on Basic Mechanisms in Two-Phase Flow and Heat Transfer,ASME, pp. 1925.

    Google Scholar 

  • Kordyban, E. S., and T. Ranov 1970, Mechanism of Slug Formation in Horizontal Two-Phase Flow. J. Basic Eng., vol. 92, pp. 857–864.

    Article  Google Scholar 

  • Lamb, H. 1945, Hydrodynamics, 6th ed. New York: Dover.

    Google Scholar 

  • Lee, S. C., and S. G. Bankoff 1982, Stability of Steam-Water Countercurrent Flow in an Inclined Channel. J. Heat Transfer, vol. 105, pp. 713–718.

    Article  Google Scholar 

  • Linehan, J H. 1968, The Interaction of Two-Dimensional, Stratified, Turbulent Air-Water and Steam-Water Flows. Ph.D, thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Liu, J. S. K., R. P. Collier, and R. A. Cudnik 1978, Flooding of Countercurrent Steam-Water Flow in an Annulus. Symposium on Topics in Two-Phase Heat Transfer and Flow, ASME, pp. 107–113.

    Google Scholar 

  • Mickley, H. S., R. C. Ross, A. L. Squyers, and W. E. Stewart 1954, Heat, Mass, and Momentum Transfer for Flow over a Flat Plate with Flowing or Suction. NASA-TN-3208.

    Google Scholar 

  • Miles, J. W. 1957, On the Generation of Surface Waves by Shear Flows. J. Fluid Mech., vol. 3, pp. 185–204.

    Article  Google Scholar 

  • Miles,J. W. 1959a,On the Generation ofSurface Wavesby Shear

    Google Scholar 

  • Flows.Fart 2. J. Fluid Mech., vol. 6,pp. 568–582.

    Google Scholar 

  • Miles,J. W. 1959b, On the Generation ofSurface Waves by Shear

    Google Scholar 

  • Flows.Part 3. J. Fluid Mech., vol. 6, 583–592.

    Google Scholar 

  • Miles,J. W. 1962, On the Generation of Surface Waves by Shear

    Google Scholar 

  • Flows.Part 4. J. Fluid Mech., vol. 13, 433–448.

    Google Scholar 

  • Milne-Thomson, L. M. 1955, Theoretical Hydrodynamics, 3rd ed. New York: Macmillan.

    Google Scholar 

  • Mishima, K., and M. Ishii 1980, Theoretical Prediction of Onset of Horizontal Slug Flow. J. Fluids Eng., vol. 102, pp. 441–445.

    Article  Google Scholar 

  • Nicklin, D. J., and J. F. Davidson 1962, The Onset of Instability in Two-Phase Slug Flow. Proceedings of Symposium on Two-Phase Flow, Institute of Mechanical Engineers, p. 29.

    Google Scholar 

  • Nikuradse, J. 1933, Stromungsgesetze in Rauhen Rohren. Forsch. Arb. Ing. Wes., No. 361.

    Google Scholar 

  • Nusselt, W. 1916, Die Oberflachenkondensation des Wasserdampfes. Z. Ver. Dtsch. Zucker Ind., vol, 60, pp. 541–569.

    Google Scholar 

  • Ostrogorsky, A. G., R. R. Gay, and R. T. Lahey, Jr. 1981, The Analysis of Countercurrent Two-Phase Flow Pressure Drop and CCFL Breakdown in Diabatic and Adiabatic Conduits. NUREG/CR-2386. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Pushkina, O. L., and Y. L. Sorokin 1969, Breakdown of Liquid Film Motion in Vertical Tubes, Heat Transfer Sow. Res., vol. 1,pp. 56–64.

    Google Scholar 

  • Richter, H, J. 1981, Flooding in Tubes and Annuli. Int. Multiphase Flow, vol. 7, pp. 647–658.

    Article  CAS  Google Scholar 

  • Rothe, P. H., and C. J. Crowley 1978, Scaling of Pressure and Subcooling for Countercurrent Flow. NUREG/CR-0464. Nuclear Regulatory Commission, Washington, D.C.

    Google Scholar 

  • Schlichting, H. 1960, Boundary Layer Theory, 6th ed. New York: McGraw-Hill.

    Google Scholar 

  • Shearer, C. J., and J. F. Davidson 1965, The Investigation of a Standing Wave Due to Gas Blowing Upwards over a Liquid Film; Its Relation to Flooding in Wetted-Wall Columns. J. Fluid Mech., vol. 22, pp. 321–336.

    Article  Google Scholar 

  • Silver, R, S., and G. B. Wallis 1965, A Simple Theory for Longitudinal Pressure Drop in the Presence of Lateral Condensation. Proc. Inst. Mech. Eng. London, vol. 180, pp. 36–40.

    Article  Google Scholar 

  • Stainthorp, E. P., and R. S. W. Batt 1967, The Effect of Cocurrent and Countercurrent Air Flow on the Wave Properties of Falling Liquid Films. Trans. Inst. Chem. Eng., vol. 45, pp. T372 - T382.

    CAS  Google Scholar 

  • Sun, K. H. 1979, Flooding Correlations for BWR-Bundle Upper Tieplates and Bottom Side-Entry Orifices. Second Multiphase Flow and Heat Transfer Symposium, University of Miami, Miami Beach, Florida.

    Google Scholar 

  • Suzuki, S., and T. Ueda 1977. Behavior of Liquid Films and Flooding in Countercurrent Two-Phase Flows. Part 1: Flow in Circular Tubes. Int. J. Multiphase Flow, vol. 3, pp. 517–532.

    Article  CAS  Google Scholar 

  • Taitel, Y., D. Barnea, and A. E. Dukler 1982, A Film Model for Prediction of Flooding and Flow Reversal for Gas-Liquid Flow in Vertical Tubes. Int. J. Multiphase Flow, vol. 8, pp. 1–22.

    Article  CAS  Google Scholar 

  • Taitel, Y., and A. E. Dukler 1976, A Model for Predictive Flow Regime Transitions in Horizontal and Near Horizontal Gas-Liquid Flow. AIChE J., vol. 22, pp. 47–55.

    Article  CAS  Google Scholar 

  • Tien, C. L. 1977, A Simple Analytical Model for Countercurrent Flow Limiting Phenomena with Condensation. Lett. Heat Mass Transfer, vol. 4, pp. 231–237.

    Article  CAS  Google Scholar 

  • Tien, C. L., K. S. Chung, and C. P. Liu 1980, Flooding in Two-Phase Countercurrent Flows. I. Analytical Modeling. Physicochem. Hydrodyn., vol. 1, pp. 195–207.

    Google Scholar 

  • Tobilevich, N. Y., I. I. Sagan, and Y. G. Porzhezihskii 1968, The Downward Motion of a Liquid Film in Vertical Tubes in an Air-Vapor Counter Flow. J. Eng. Phys., vol. 15, pp. 1071–1076.

    Article  Google Scholar 

  • Turner, J. M. 1966 An Analysis of the Liquid Film in Annular Flow. Ph.D. thesis, Dartmouth College, Hanover, New Hampshire.

    Google Scholar 

  • Wallis, G. B. 1961, Flooding Velocities for Air and Water in Vertical Tubes. AAEW-R123, UKAEA, Harwell, England.

    Google Scholar 

  • Wallis, G. B. 1962, The Influence of Liquid Viscosity on Flooding in a Vertical Tube. GL132, General Electric Co., Schenectady, N.Y.

    Google Scholar 

  • Wallis, G. B. 1969, One-Dimensional Two-Phase Flow, Chap. 11. New York: McGraw-Hill.

    Google Scholar 

  • Wallis, G. B., C. J. Crowley, and J. A. Block 1975, ECC Bypass Studies. AIChE Symposium on Light-Water Reactor Safety, Boston, MA.

    Google Scholar 

  • Wallis, G. B., D. C. deSieyes, R. J. Rosselli, and J. Lacombe 1980, Countercurrent Annular Flow Regimes for Steam and Subcooled Water in a Vertical Tube. EFRI NP-1336. Electric Power Res. Inst., Palo Alto, California.

    Google Scholar 

  • Wallis, G. B., and J. E. Dobson 1973, The Onset of Slugging in Horizontal Stratified Air-Water Flow. Int. J. Multiphase Flow, vol. 1, pp. 173–193.

    Article  Google Scholar 

  • Wallis, G. B., and J. T. Kuo 1976, The Behavior of Gas-Liquid Interface in Vertical Tubes. Int. J. Multiphase Flow, vol. 2, pp. 521–536

    Google Scholar 

  • Wallis, G. B., and S. Makkenchery 1974, The Hanging Film Phenomenon in Vertical Annular Two-Phase Flow. J. Fluids Eng., vol. 96,pp. 297–298.

    Article  Google Scholar 

  • Wallis, G. B., D. A. Steen, and S. N. Brenner 1963, AEC Report NYO-10487 EURAEC 890.

    Google Scholar 

  • Whitman, W. G. 1923, The Two-Film Theory for Gas Absorption. Chem. Met. Eng., vol. 29, pp. 146–148.

    CAS  Google Scholar 

  • Yao, L. S., and K. H. Sun 1981, On the Prediction of the Hydrodynamic Flooding Criterion. Thermal-Hydraulics in Nuclear Reactor Technology Symposium, Sun, K. H., S. C. Yao, P. Marinkovich, and V. K. Dhir, eds., ASME Heat Transfer Div., Publ. HTD, vol. 15.

    Google Scholar 

  • Zvirin, Y., R. B. Duffey, and K. H. Sun 1979, On the Derivation of a Countercurrent Flooding Theory. Symposium on Fluid Flow and Heat Transfer over Rod or Tube Bundles, ASME, New York. pp. 111–119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bankoff, S.G., Lee, S.C. (1986). A Critical Review of the Flooding Literature. In: Hewitt, G.F., Delhaye, J.M., Zuber, N. (eds) Multiphase Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01657-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01657-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01659-6

  • Online ISBN: 978-3-662-01657-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics