In the limit of very low density n all gases follow the law
where p is the pressure, V the volume, N the number of molecules or moles, respectively, k Boltzmanns’s constant, R the gas constant, T the thermodynamic temperature, and n= N/V the number density or molar density, respectively.


Entropy Dioxide Anisotropy Argon Helium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 5

  1. 1.
    Hill, T L.: Introduction to statistical thermodynamics. Reading: Addison-Wesley 1960Google Scholar
  2. 2.
    Hâla, E.; Boublik, T.: Einführung in die statistische Thermodynamik. Braunschweig: Vieweg 1970Google Scholar
  3. 3.
    Mayer, J. E.; Mayer, M. G.: Statistical mechanics. New York: Wiley 1940MATHGoogle Scholar
  4. 4.
    Stroud, A. H.: Approximate calculation of multiple integrals. Englewood Cliffs: Prentice Hall 1971MATHGoogle Scholar
  5. 5.
    Levenberg, K.: Q. Y. Mech. Appl. Math. 2 (1944) 164MathSciNetMATHGoogle Scholar
  6. 6.
    Marquardt, D. W.: Y. Soc. Ind. Appl. Math. 11 (1963) 431MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ameling, W.; Luckas, M.; Shukla, K. P.; Lucas, K.: Mol. Phys. 56 (1985) 335ADSCrossRefGoogle Scholar
  8. 8.
    Bier, K.; Maurer, G.; Sand, H.: Ber. Bunsenges. Phys. Chem. 84 (1980) 437CrossRefGoogle Scholar
  9. 9.
    Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.: Molecular theory of gases and liquids. New York: Wiley 1954MATHGoogle Scholar
  10. 10.
    Kim, S.; Henderson, D.: Proc. Natl. Acad. Sci. US 55 (1966) 705ADSCrossRefGoogle Scholar
  11. 11.
    Chapman, S.; Cowling, T. G.: Mathematical theory of non-uniform gases. London: Cambridge University Press 1970Google Scholar
  12. 12.
    Ferziger, J. H.; Kaper, H. G.: The mathematical theory of transport properties in gases. Amsterdam: North Holland 1972Google Scholar
  13. 13.
    Maitland, G.; Rigby, M.; Smith, E. B.; Wakeham, W. A.: Intermolecular forces. Oxford: Clarendon Press 1981Google Scholar
  14. 14.
    Kestin, J.; Ro, S. R.; Wakeham, W. A.: Physica 58 (1972) 165ADSCrossRefGoogle Scholar
  15. 15.
    Bousheri, A.; Vieland, L. A.; Mason, E. A.: Physica 91 A (1978) 424Google Scholar
  16. 16.
    Lucas, K.: Berechnungsmethoden für Stoffeigenschaften. VDI-Wärmeatlas, Da I bis Da 36. Düsseldorf: VDI 1984Google Scholar
  17. 17.
    Reid, R. C.; Prausnitz, J. M.; Poling, B. E.: The properties of gases and liquids. New York: McGraw-Hill 1987Google Scholar
  18. 18.
    Mason, E. A.; Spurling, T. H.: The virial equation of state. Oxford: Pergamon Press 1966Google Scholar
  19. 19.
    Monchik, L.; Mason, E. A.: J. Chem. Phys. 35 (1961) 1676Google Scholar
  20. 20.
    Maitland, G. C.; Mustafa, M.; Wakeham, W.A.; McCourt, F. R. W.: Mol. Phys. 61 (1987) 359ADSCrossRefGoogle Scholar
  21. 21.
    Ameling, W.;. Shukla, K. P.; Lucas, K.: Mol. Phys. 58 (1986) 381ADSCrossRefGoogle Scholar
  22. 22.
    Ameling, W.; Lucas, K.: Int. J. Thermophys. 7 (1986) 1135Google Scholar
  23. 23.
    Ameling, W.; Lucas, K.: Int. J. Thermophys. 8 (1987) 335ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Klaus Lucas
    • 1
    • 2
  1. 1.University of DuisburgGermany
  2. 2.Technology and Analysis e.V.Duisburg-RheinhausenGermany

Personalised recommendations