Abstract

In the limit of very low density n all gases follow the law
where p is the pressure, V the volume, N the number of molecules or moles, respectively, k Boltzmanns’s constant, R the gas constant, T the thermodynamic temperature, and n= N/V the number density or molar density, respectively.

Keywords

Entropy Dioxide Anisotropy Argon Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 5

  1. 1.
    Hill, T L.: Introduction to statistical thermodynamics. Reading: Addison-Wesley 1960Google Scholar
  2. 2.
    Hâla, E.; Boublik, T.: Einführung in die statistische Thermodynamik. Braunschweig: Vieweg 1970Google Scholar
  3. 3.
    Mayer, J. E.; Mayer, M. G.: Statistical mechanics. New York: Wiley 1940MATHGoogle Scholar
  4. 4.
    Stroud, A. H.: Approximate calculation of multiple integrals. Englewood Cliffs: Prentice Hall 1971MATHGoogle Scholar
  5. 5.
    Levenberg, K.: Q. Y. Mech. Appl. Math. 2 (1944) 164MathSciNetMATHGoogle Scholar
  6. 6.
    Marquardt, D. W.: Y. Soc. Ind. Appl. Math. 11 (1963) 431MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Ameling, W.; Luckas, M.; Shukla, K. P.; Lucas, K.: Mol. Phys. 56 (1985) 335ADSCrossRefGoogle Scholar
  8. 8.
    Bier, K.; Maurer, G.; Sand, H.: Ber. Bunsenges. Phys. Chem. 84 (1980) 437CrossRefGoogle Scholar
  9. 9.
    Hirschfelder, J. O.; Curtiss, C. F.; Bird, R. B.: Molecular theory of gases and liquids. New York: Wiley 1954MATHGoogle Scholar
  10. 10.
    Kim, S.; Henderson, D.: Proc. Natl. Acad. Sci. US 55 (1966) 705ADSCrossRefGoogle Scholar
  11. 11.
    Chapman, S.; Cowling, T. G.: Mathematical theory of non-uniform gases. London: Cambridge University Press 1970Google Scholar
  12. 12.
    Ferziger, J. H.; Kaper, H. G.: The mathematical theory of transport properties in gases. Amsterdam: North Holland 1972Google Scholar
  13. 13.
    Maitland, G.; Rigby, M.; Smith, E. B.; Wakeham, W. A.: Intermolecular forces. Oxford: Clarendon Press 1981Google Scholar
  14. 14.
    Kestin, J.; Ro, S. R.; Wakeham, W. A.: Physica 58 (1972) 165ADSCrossRefGoogle Scholar
  15. 15.
    Bousheri, A.; Vieland, L. A.; Mason, E. A.: Physica 91 A (1978) 424Google Scholar
  16. 16.
    Lucas, K.: Berechnungsmethoden für Stoffeigenschaften. VDI-Wärmeatlas, Da I bis Da 36. Düsseldorf: VDI 1984Google Scholar
  17. 17.
    Reid, R. C.; Prausnitz, J. M.; Poling, B. E.: The properties of gases and liquids. New York: McGraw-Hill 1987Google Scholar
  18. 18.
    Mason, E. A.; Spurling, T. H.: The virial equation of state. Oxford: Pergamon Press 1966Google Scholar
  19. 19.
    Monchik, L.; Mason, E. A.: J. Chem. Phys. 35 (1961) 1676Google Scholar
  20. 20.
    Maitland, G. C.; Mustafa, M.; Wakeham, W.A.; McCourt, F. R. W.: Mol. Phys. 61 (1987) 359ADSCrossRefGoogle Scholar
  21. 21.
    Ameling, W.;. Shukla, K. P.; Lucas, K.: Mol. Phys. 58 (1986) 381ADSCrossRefGoogle Scholar
  22. 22.
    Ameling, W.; Lucas, K.: Int. J. Thermophys. 7 (1986) 1135Google Scholar
  23. 23.
    Ameling, W.; Lucas, K.: Int. J. Thermophys. 8 (1987) 335ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Klaus Lucas
    • 1
    • 2
  1. 1.University of DuisburgGermany
  2. 2.Technology and Analysis e.V.Duisburg-RheinhausenGermany

Personalised recommendations