Elements of Quantum Mechanics and Statistical Mechanics

  • Klaus Lucas


It was said in the introduction that statistical thermodynamics derives the macroscopic thermodynamic functions of a system from the properties of its molecules. The properties of individual molecules as well as the intermolecular interactions between them are described by a particular theory, i.e. quantum mechanics. The transition from the molecular properties of a system to its thermodynamic functions is provided by another particular theory, i.e. statistical mechanics. Within the framework of applied statistical thermodynamics we thus need some elements of quantum mechanics and statistical mechanics. We may and will restrict ourselves to those elements of these theories that are indispensable for the derivation of the working equations of statistical thermodynamics. Fortunately, it turns out to be unnecessary to go into the depths of either of these complicated theories for our purposes.


Wave Function Quantum Mechanics Partition Function Dynamical Variable Translational Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 2

  1. 1.
    Schpolski, E. W.: Atomphysik, Bd. Il. Berlin: VEB Deutscher Verlag der Wissenschaften 1956Google Scholar
  2. 2.
    McQuarrie, D. A.: Quantum chemistry. Mill Valley: University Science Books 1983Google Scholar
  3. 3.
    Kestin, J.; Dorfman, J. R.: A course in statistical thermodynamics. New York: Academic Press 1971Google Scholar
  4. 4.
    Merzbacher, E.: Quantum mechanics. New York: John Wiley 1970Google Scholar
  5. 5.
    Messiah, A.: Quantum mechanics. Amsterdam: North Holland 1975Google Scholar
  6. 6.
    Margenau, H.; Murphy, G. M.: The mathematics of physics and chemistry. New York: Van Nostrand 1956MATHGoogle Scholar
  7. 7.
    Hâla, E.; Boublik, T.: Einführung in die statistische Thermodynamik. Braunschweig: Vieweg 1970Google Scholar
  8. 8.
    Hill, T. L.: Introduction to statistical thermodynamics. Reading: Addison-Wesley 1960Google Scholar
  9. 9.
    Reed, T. M.; Gubbins, K. E.: Applied statistical mechanics. New York: McGraw-Hill 1973Google Scholar
  10. 10.
    Rowlinson, J. S.; Swinton, E. L.: Liquids and liquid mixtures. London: Butterworth 1982Google Scholar
  11. 11.
    McQuarrie, D. A.: Statistical mechanics. New York: Harper and Row 1976Google Scholar
  12. 12.
    Benson, A. M.; Drickamer, H. G.: J. Chem. Phys. 27 (1957) 1164Google Scholar
  13. 13.
    Gray, C. G.; Gubbins, K. E.: Theory of molecular fluids. Oxford: Clarendon Press 1984MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • Klaus Lucas
    • 1
    • 2
  1. 1.University of DuisburgGermany
  2. 2.Technology and Analysis e.V.Duisburg-RheinhausenGermany

Personalised recommendations