Skip to main content

Protein and Fat Determination in Corn

  • Chapter
Seed Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 14))

Abstract

Determination of protein and fat content are fundamental to the analyses of corn (Zea mays L.). For protein the major determination methods are Kjeldahl, Dumas, and near-infrared reflectance spectroscopy (NIRS). For fat the most common determination techniques are solvent extraction, nuclear magnetic resonance spectroscopy (NMR), and NIRS. Standard reference procedures for protein and fat analysis of corn grain may be found in AOAC (1984 a, b, 1989), AACC (1983 a, b, c), and SAM (1990). This chapter describes the techniques and the steps necessary to ensure reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AACC (1983a) Method 39–10. Near infrared reflectance method for protein determination. In: Christensen EA (ed) Approved methods of the AACC. American Association of Cereal Chemists, St. Paul, MN

    Google Scholar 

  • AACC (1983b) Method 46–13. Crude protein micro Kjeldahl method. In: Christensen EA (ed) Approved methods of the AACC. American Association of Cereal Chemists, St. Paul, MN

    Google Scholar 

  • AACC ( 1983 c) Method 30— 20. Crude fat in grain and stock feeds. In: Christensen EA (ed) Approved methods of the AACC. American Association of Cereal Chemists, St. Paul, MN

    Google Scholar 

  • Abrahms F (1989) Sample preparation. In: Marten G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, p 23

    Google Scholar 

  • Alexander DE, Silvela L, Collins FI, Rodgers RC (1967) Analysis of oil content of maize by wide-line NMR. J Am Oil Chem 44: 555–558

    Article  CAS  Google Scholar 

  • AOAC (1984a) Protein (crude) in animal feed. In: Williams S (ed) Official methods of analysis of the Association of Official Analytical Chemists

    Google Scholar 

  • AOAC (1984b) Fat (crude) or ether extract in animal feed. In: Williams S (ed) Official methods of analysis of the Association of Official Analytical Chemists

    Google Scholar 

  • AOAC (1989) Fiber (acid detergent) and protein (crude) in animal feed and forages. Near-infrared reflectance spectroscopic method. J Assoc Off Anal Chem 72: 182–184

    Google Scholar 

  • Barton FE II (1987) Analytical application to fibrous foods and commodities. In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St. Paul, MN, pp 169–183

    Google Scholar 

  • Barton FE II (1989) Appendix 2. Considerations of chemical analyses. In: Marten G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, pp 68–82

    Google Scholar 

  • Berthelot MP (1859) Violt d’aniline. Repert Chim Appl 1: 284

    Google Scholar 

  • Bhatty RS (1985) Comparison of the Soxtec and Goldfisch systems for determination of oil in grain species. Can Inst Food Sci Technol J 18: 181–184

    Article  Google Scholar 

  • Bremner JM (1965) Total nitrogen. In: Black CA, Evans DD, White JL, Ensminger LE, Clarke FE (eds) Methods of soil analysis, part 2. Am Soc Agron, Madison, WI, Agronomy 9: 1149–1178

    Google Scholar 

  • Bremner JJ, Breitenbeck GA (1983) A simple method for determination of ammonium in semimicro-Kjeldahl analysis of soil and plant materials using a block digester. Commun Soil Sci Plant Anal 14:905 —913

    Google Scholar 

  • Bremner JM, Mulvaney CS (1982) Nitrogen — total. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. Chemical and microbiological properties. Am Soc Agron, Madison, WI, Agronomy 9: 595–624

    Google Scholar 

  • Butler LA (1983) The history and background of NIR. Cereal Foods World 28:238–240 Campbell DC (1986) Micro-Kjeldahl analysis using 40-tube block digester and steam distillation. J Assoc Off Anal Chem 69:1013 —1016

    Google Scholar 

  • Cataldo DA, Schroder LE, Youngs VL (1974) Analysis by digestion and colorimetric assay of total nitrogen in plant tissues high in nitrate. Crop Sci 14: 854–856

    Article  CAS  Google Scholar 

  • Conway TF (1960) Proceedings of a symposium on high-oil corn. Dept Agron, University of Illinois, pp 29–32

    Google Scholar 

  • Conway TF, Smith VR (1963) In: Ferraro JR, Ziomek JS (eds) Developments in applied spectroscopy, vol 2. Plenum, New York, pp 115–127

    Google Scholar 

  • Crooke WM, Simpson WE (1971) Determination of ammonium in Kjeldahl digests of crops by an automated procedure. J Sci Food Agric 22: 9–10

    Article  CAS  Google Scholar 

  • Dumas JBA (1831) Procedes de l’analyse organique. Ann Chim Phys 47: 198–213

    Google Scholar 

  • Florence E, Milner DF (1979) Routine determination of nitrogen by Kjeldahl digestion without use of catalyst. Analyst 104: 378–381

    Article  PubMed  CAS  Google Scholar 

  • Hach CC, Brayton SV, Kopelove AB (1985) A powerful Kjeldahl nitrogen method using peroxymonosulfuric acid. J Agric Food Chem 33: 1117–1123

    Article  CAS  Google Scholar 

  • Hach CC, Bowden BK, Kopelove AB, Brayton SV (1987) More powerful peroxide Kjeldahl digestion method. J Assoc Off Anal Chem 70:783 —787

    Google Scholar 

  • Hambleton LC, Noel RJ (1975) Protein analysis of feeds, using a block digester. J Assoc Off Anal Chem 58:143 —145

    Google Scholar 

  • He XT, Mulvaney RL, Banwart WL (1990) A rapid method for total nitrogen analysis using microwave digestion. Soil Sci Soc Am J 54: 1625–1629

    Article  CAS  Google Scholar 

  • Honigs DE, Hieftje GM, Mark HL, Hirschfeld TB (1985) Unique-sample selection via near-infrared spectral subtraction. Anal Chem 57: 2299–2303

    Article  PubMed  CAS  Google Scholar 

  • Hruschka WR (1987) Data analysis: wavelength selection methods. In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St. Paul, MN, pp 35–55

    Google Scholar 

  • Hymowitz T, Dudley JW, Collins FI, Brown CI (1974) Estimations of protein and oil concentra tion in corn, soybean, and oat seed by near-infrared light reflectance. Crop Sci 14: 713–715

    Article  Google Scholar 

  • Issac RA, Johnson WC (1976) Determination of total nitrogen in plant tissue using a block digest er. J Assoc Off Anal Chem 59: 98–100

    Google Scholar 

  • Jones JB Jr (1987) Kjeldahl nitrogen determination — what’s in a name. J Plant Nutr 10:1675 —1682

    Google Scholar 

  • Kirk PL (1950) Kjeldahl method for total nitrogen. Anal Chem 22: 354–358

    Article  CAS  Google Scholar 

  • Kjeldahl J (1883) Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z Anal Chem 22: 366–382

    Google Scholar 

  • Lambert RJ, Alexander DE, Rodgers RC (1967) Effects of kernel position on oil content in corn (Zea mays L.). Crop Sci 7:143 —144

    Google Scholar 

  • Martens H, Naes T (1987) Multivariate calibration by data compression. In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industires. American Association of Cereal Chemists, St. Paul, MN, pp 57–87

    Google Scholar 

  • McGeehan SL, Naylor DV (1988) Automated instrumental analysis of carbon and nitrogen in plant and soil samples. Commun Soil Sci Plant Anal 19:493 — 505

    Google Scholar 

  • Melchinger AE, Schmidt GA, Geiger HH (1986) Evaluation of near infra-red reflectance spectros copy for predicting grain and stover quality traits in maize. Plant Breed 97: 20–29

    Article  Google Scholar 

  • Nelson DW, Sommers LE (1973) Determination of total nitrogen in plant material. Agron J 65: 109–112

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1980) Total nitrogen analysis of soil and plant tissues. J Assoc Off Anal Chem 63: 770–778

    CAS  Google Scholar 

  • Morris KH ( 1983 a) Extracting information from spectrophotometric curves. Predicting chemical composition from visible and near-infrared spectra. In: Martens H, Russwurm H jr (eds) Food research and data analysis. Applied Science Publ, New York

    Google Scholar 

  • Norris KH ( 1983 b) Multivariate analysis of raw materials. In: Shemilt T (ed) Chemistry and world food supplies: the new frontiers. Pergamon Press, New York

    Google Scholar 

  • Morris KH (1989a) Definition of NIRS analysis. In: Martens G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, p 6

    Google Scholar 

  • Norris KH (1986b) NIRS instrumentation. In: Marten G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, pp 12–17

    Google Scholar 

  • Orthoefer FT, Sinram RD (1987) Corn oil: composition, processing, and utilization. In: Watson SA, Ramstead PE (ed) Corn chemistry and technology. American Association of Cereal Chemists, St. Paul, MN, pp 535–552

    Google Scholar 

  • Osborne BG, Fearn T (1986) Near infrared spectroscopy in food analysis. Longman Scientific & Technical, Essex

    Google Scholar 

  • Perradeo J, Dorsant H, Cuesta A, Laredo MAC (1983) Determinacion de nitrogeno en varias fuentes alimenticias, utilizando los metodes de macro y micro-Kjeldahl. Rev Inst Colomb Agropecu 18: 233–239

    Google Scholar 

  • Powers RF, Van Gent DL, Townsend RF (1981) Ammonia electrode analysis of nitrogen in micro- Kjeldahl digest of forest vegetation. Common Soil Sci Plant Anal 12: 19–30

    Article  CAS  Google Scholar 

  • Preez DR du, Bate GC (1989a) A sample method for the quantitative recovery of nitrate-N during Kjeldahl analysis of dry soil and plant samples. Commun Soil Sci Plant Anal 20: 345–357

    Article  Google Scholar 

  • Preez DR du, Bate GC (1989 b) Recovery of nitrate-N in dry soil and plant samples by the standard unmodified Kjeldahl procedure. Commun Soil Sci Plant Anal 20: 1915–1931

    Google Scholar 

  • Randall EL (1974) Improved method for fat and oil analysis by a new process of extraction. J Assoc Off Anal Chem 57:1165 —1168

    Google Scholar 

  • Rutar V (1989) Magic angle sample spinning NMR spectroscopy of liquids as a nondestructive method for studies of plant seeds. J Agric Food Chem 37: 67–70

    Article  CAS  Google Scholar 

  • SAM (1990) Method A-6. Corn analysis (crude fat). In: Bernetti R (ed) Standard analytical methods of the member companies of the corn industries research foundation. Corn Refiners Assoc, Washington

    Google Scholar 

  • Shenk JS (1989) Public software. In: Martin G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, pp 18–21

    Google Scholar 

  • Shenk JS, Westerhaus MO, Hoover MR (1979) Analysis of forages by infrared reflectance. J Dairy Sci 62: 807–812

    Article  CAS  Google Scholar 

  • Shenk JS, Westerhaus MO, Abrams SM (1989) Supplement 2. Protocol for NIRS calibration: monitoring analysis results and recalibration. In: Marten G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, pp 104–110

    Google Scholar 

  • Skjemstad JO, Reeve R (1976) The determination of nitrogen in soils by rapid high-temperature dahl digest of plant tissue. Commun Soil Sci Plant Anal 11: 709–722

    Google Scholar 

  • Kjeldahl digestion and autoanalysis. Commun Soil Sci Plant Anal 7:229— 239

    Google Scholar 

  • Smith VR (1980) A phenol-hypochlorite manual determination of ammonium-nitrogen in Kjel dahl digest of plant tissue. Commun Soil Sci Plant Anal 11: 709–722

    Article  CAS  Google Scholar 

  • Sweeney RA, Rexroad PR (1987) Comparison of LECO FP-228 “nitrogen determinator” with AOAC copper catalyst Kjeldahl method for crude protein. J Assoc Off Anal Chem 70:1028 —1030

    Google Scholar 

  • Tkachuk R (1981) Protein analysis of whole wheat kernels by near infrared reflectance. Cereal Foods World 26: 584–587

    CAS  Google Scholar 

  • Tkachuk R (1987) Analysis of whole grains by near-infrared reflectance. In: Williams P, Norris K (eds) Near-infrared technology in the agricultural and food industries. American Association of Cereal Chemists, St. Paul, MN, pp 233–240

    Google Scholar 

  • Vittori Antisari L, Sequi P (1988) Comparison of total nitrogen by four procedures and sequential determination of exchangeable ammonium, organic nitrogen, and fixed ammonium in soil. Soil Sci Soc Am J 52: 1020–1023

    Article  Google Scholar 

  • Wall LL, Gehrke CW, Neuner TE, Cathey RD, Rexroad PR (1975) Total protein nitrogen: evalua- tion and comparison of four different methods. J Assoc Off Anal Chem 58: 811–817

    CAS  Google Scholar 

  • Watkins KL, Trygvel LV, Drause GF (1987) Total nitrogen determination of various sample types: a comparison of the Hach, Kjeltec, and Kjeldahl methods. J Assoc Off Anal Chem 70: 410–412

    Google Scholar 

  • Weber EJ (1987) Lipids of the kernel. In: Watson SA (ed) Corn chemistry and technology. American Association of Cereal Chemists, St. Paul, MN, pp 311–349

    Google Scholar 

  • White LM, Long MC (1951) Kjeldahl microdigestion in sealed tubes at 470°C. Anal Chem 23:363 —365

    Google Scholar 

  • Williams PC (1975) Application of near infrared reflectance spectroscopy to analysis of cereal grains and oilseeds. Cereal Chem 52: 561–576

    Google Scholar 

  • Williams PC (1984) A study of grinders used for sample preparation in laboratory analysis of grains. Cereal Foods World 29: 770–775

    Google Scholar 

  • Windham WR, Mertens DR, Barton FE II (1989) Supplement 1. Protocol for NIRS calibration: sample selection and equation development and validation. In: Marten G, Shenk J, Barton F (eds) Near infrared reflectance spectroscopy (NIRS): analysis of forage quality. US Department of Agriculture, Agriculture Handbook No 643, pp 96–103

    Google Scholar 

  • Winkler LW (1913) Beitrag zur titrimetrischen Bestimmung des Ammoniaks. Z Angew Chem 26: 231–232

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bullock, D., Moore, K. (1992). Protein and Fat Determination in Corn. In: Linskens, H.F., Jackson, J.F. (eds) Seed Analysis. Modern Methods of Plant Analysis, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01639-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01639-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01641-1

  • Online ISBN: 978-3-662-01639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics