Skip to main content

Protein Analysis of Wheat by Monoclonal Antibodies and Nuclear Magnetic Resonance

  • Chapter
Seed Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 14))

  • 466 Accesses

Abstract

Wheat ranks first among our cultivated plants. Production in 1990 approached 600 million metric tons. Despite increasing industrial end uses, most wheat is used for food. In addition to providing a range of nutrients, it also possesses remarkable technological properties which allow the production of a variety of different processed foodstuffs such as bread, biscuit, and pasta. In addition, upon removal of the water-soluble components of a flour, wheat proteins have the unique property to form, with a few percent lipids, an insoluble and viscoelastic proteinaceous mass termed gluten, which forms the basis of the rheological properties of dough. Dry gluten, also, is increasingly used as improver or additive in flours and in various foods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ablett S, Barnes DJ, Davies AP, Ingman SJ, Patient DW (1988) C13 and pulse nuclear magnetic resonance spectroscopy of wheat proteins. J Cereal Sci 7: 11–20

    Article  CAS  Google Scholar 

  • Akoka S, Tellier C, Le Roux C, Marion D (1988) A phosphorus magnetic resonance spectroscopy and a differential scanning calorimetry study of the physical properties of N-acylphosphatidylethanol-amines in aqueous dispersions. Chem Phys Lipids 46: 43–50

    Article  CAS  Google Scholar 

  • Ariss AJ (1986) Immunocytochemical studies of wheat proteins. Thesis, Hatfield Polytechnic, Hatfield, UK

    Google Scholar 

  • Asano K, Shinagawa K, Hashimoto N (1983) Characterization of hazeforming proteins of beer and their role in chill haze formation. Rep Res Lab Kirin Brew Co Ltd 26: 45–55

    CAS  Google Scholar 

  • Ayob MK, Rittenburg J, Allen JC, Smith CJ (1988) Development of a rapid enzyme-linked immunosorbent assay ( ELISA) for gliadin determination in food. Food Hydrocolloids 2: 39–49

    Google Scholar 

  • Baianu IC (1981) Carbon-13 and proton nuclear magnetic resonance studies of wheat proteins. I. Spectral assignments for Flanders gliadins in solution. J Sci Food Agric 32: 309–313

    Article  CAS  Google Scholar 

  • Baianu IC, Johnson LF, Waddell DK (1982) High-resolution proton, carbon-13 and nitrogen-15 NMR studies of wheat proteins at high magnetic fields: spectral assignments, changes with concentration and heating treatments of Flinor gliadins in solution — comparison with gluten spectra. J Sci Food Agric 33: 373–383

    Article  CAS  Google Scholar 

  • Bebyakin VM, Lutsishina EG (1987 a) Heterogeneity of varietal and hybrid populations with respect to gluten quality as determined by NMR. Fiziol Biokhim Kul’t Rast 19: 369–371 (in Russian)

    Google Scholar 

  • Bebyakin VM, Lutsishina EG (1987b) Effectiveness of selecting wheat grains for gluten quality by proton NMR relaxation measurement in a system of cyclical and exhaustive crosses. Vestn Skh Nauki 12: 25–28 (in Russian)

    Google Scholar 

  • Belton PS, Shewry PR, Tatham AS (1985) 13C solid state NMR study of wheat gluten. J Cereal Sci 3:305 —317

    Google Scholar 

  • Belton PS, Duce SL, Tatham AS (1987a) Nuclear magnetic resonance studies of wheat gluten. In: Morton ID (ed) Cereals in a European context. Ellis Horwood Ltd, Bournemouth, UK, pp 489–495

    Google Scholar 

  • Belton PS, Duce SL, Tatham AS (1987b) Carbon-13 solution state and solid state n.m.r. of wheat gluten. Int J Biol Macromol 9: 357–362

    Article  CAS  Google Scholar 

  • Belton PS, Duce SL, Tatham AS (1988a) Proton nuclear magnetic resonance relaxation studies of dry gluten. J Cereal Sci 7:113–122

    Article  CAS  Google Scholar 

  • Belton PS, Duce SL, Colquhoun IJ, Tatham AS (1988 b) High-power carbon-13 and proton nuclear magnetic resonance in dry gluten. Magn Reson Chem 26: 245–251

    Google Scholar 

  • Belton PS, Colquhoun IJ, Tatham AS (1989) Nuclear magnetic resonance studies of gluten. Agric Food Chem Consum, Proc Eur Conf Food Chem 5: 489–492

    Google Scholar 

  • Bony M (1990) Détection et dosage du gluten. Biofutur 87: 11

    Google Scholar 

  • Bushuk W, MacRitchie F (1989) Wheat proteins: aspects of structure that determine breadmaking quality. In: Phillips RD, Finley JW (eds) Protein quality and the effects of processing. Marcel Dekker, New York, pp 345–369

    Google Scholar 

  • Chan HWS, Morgan MRA, Mills ENC (1990) Determining wheat baking quality by glutenin subunit immunoassay. Eur Pat Appl EP 361,838. GB Appl 88 /23, 027

    Google Scholar 

  • Ciclitira PJ, Ellis HJ, Evans DJ, Lennox ES (1985) A radio-immunoassay for wheat gliadin to assess the suitability of gluten free foods for patients with celiac disease. Clin Exp Immunol 59:703 —708

    Google Scholar 

  • Daussant J, Bureau D (1988) Immunochemistry of cereal enzymes. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 9. Am Assoc Cereal Chemists, St Paul, MN, USA, pp 47 —90

    Google Scholar 

  • Dawood MR, Howes NK, Bushuk W (1989) Preparation of monoclonal antibodies against specific gliadin proteins and preliminary investigations of their ability to discriminate cereal cultivars. J Cereal Sci 10:105 —112

    Google Scholar 

  • Donovan GR, Skerritt JH, Castle SL (1989) Monoclonal antibodies used to characterize cDNA clones expressing specific wheat endosperm proteins. J Cereal Sci 9: 97–111

    Article  CAS  Google Scholar 

  • Du Cros DL, Campbell WP, Skerritt JH, Wrigley CW, Cressey PJ (1984) Characterization of quality-related gluten proteins using chemical methods and monoclonal antibodies. In: Graveland A, Moonen JHE (eds) Proc 2nd Int Workshop on Gluten proteins, TNO, Wageningen, The Netherlands, pp 155 —161

    Google Scholar 

  • Ellis Hi, Freedman AR, Ciclitira PJ (1989) The production and characterization of monoclonal antibodies to wheat gliadin peptides. J Immunol Methods 120: 17–22

    Article  Google Scholar 

  • Ewart JAD (1977) Immunochemistry of wheat proteins. In: Castimpoolas N (ed) Immunological aspects of food. Avi Publ Co, Westport, CT, USA, pp 87–116

    Google Scholar 

  • Feillet P (1988) Protein and enzyme composition of durum wheat. In: Fabriani G, Lintas C (eds) Durum Wheat: Chemistry and Technology, American Association of Cereal Chemists, St Paul, MN, USA, pp 93 —119

    Google Scholar 

  • Feillet P, Popineau Y (1990) Protein-protein interactions. In: Salovaara (ed) Proc ICC’90, Int Assoc of Cereal Science, Vienna (Abstr), p 36

    Google Scholar 

  • Freedman AR, Galfre G, Gal E, Ellis Hi, Ciclitira PJ (1987a) Detection of wheat gliadin contamination of gluten-free foods by a monoclonal antibody dot immunobinding assay. Clin Chim Acta 166:323 —328

    Google Scholar 

  • Freedman AR, Galfre G, Gal E, Ellis HJ, Ciclitira PJ (1987 b) Monoclonal antibody ELISA to quantitate wheat gliadin contamination of gluten-free foods. J Immunol Methods 98:123 —127

    Google Scholar 

  • Freedman AR, Wieser H, Ellis HJ, Ciclitira PJ (1988) Immunoblotting of gliadins separated by reversed-phase high-performance liquid chromatography: detection with monoclonal antibodies. J Cereal Sci 8: 231–238

    Article  CAS  Google Scholar 

  • Friis SU (1988) Enzyme-liked immunosorbent assay for quantitation of cereal proteins toxic in celiac disease. Clin Chim Acta 178: 261–270

    Article  PubMed  CAS  Google Scholar 

  • Fritschy F, Windemann H, Baumgartner E (1985) Quantitative determination of wheat gliadins in foods by enzyme linked immunosorbent assay. Z Lebensm Unters Forsch 181: 379–385

    Article  PubMed  CAS  Google Scholar 

  • Gallant D, Laurière M, Popineau Y, Benhdech H (1989) Use and limits of immunochemistry and cytochemistry in cereal studies. In: Salovaara H (ed) Wheat end-use properties, wheat and flour characterization for specific end-uses, Int Assoc Cereal Science, Vienna, pp 187–207

    Google Scholar 

  • Grosskreutz JC (1961) A lipoproteic model of wheat gluten structure. Cereal Chem 38: 336–349

    CAS  Google Scholar 

  • Guillou-Charpin M, Le Botlan D, Teilier C, Mechin B (1988) Une méthode rapide d’analyse des aliments: la résonance magnétique nucléaire basse résolution. Ind Agric Alim 105: 463–471

    Google Scholar 

  • Howes NK, Lukow OM, Dawood MR, Bushuk W (1989) Rapid detection of the 1 BL/ARS chromosome translocation in hexaploid wheats by monoclonal antibodies. J Cereal Sci 10: 1–4

    Article  Google Scholar 

  • Johnson RB, Labrooy JT, Skerritt JH (1990) Antibody responses reveal differences in oral tolerance to wheat and maize grain protein fractions. Clin Exp Immunol 79: 135–140

    Article  PubMed  CAS  Google Scholar 

  • Kasarda DD, Bernardin JE, Nimmo CC (1976) Wheat proteins. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 1. Am Assoc Cereal Chemists, St Paul, MN, USA, pp 158–236

    Google Scholar 

  • Kasarda DD, Lafiandra D, Morris R, Shewry PR (1984) Genetic relationships of wheat gliadin proteins. Kulturpflanze 32: 41–60

    Google Scholar 

  • Lecomte JTL, Jones BL, Llinas M (1982) Proton magnetic resonance studies of barley and wheat thionins: structural homology with crambin. Biochemistry 21: 4843–4849

    Article  PubMed  CAS  Google Scholar 

  • Le Grys GA, Booth MR, Al-Baghdadi SM (1981) The physical properties of wheat proteins. In: Pomeranz Y, Munck L (eds) Cereals: a renewable resource. Am Assoc Cereal Chemists, St Paul, MN, pp 243–264

    Google Scholar 

  • Le Roux C (1987) Contribution à l’étude des interactions lipides-protéines dans les produits céréaliers de cuisson: Propriétés physico-chimiques des lipides endogènes et exogènes dans les pâtes et le gluten de blé tendre. Thèse de Doctorat, Université de Nantes, France

    Google Scholar 

  • Linskens HF, Jackson JF (eds) (1986) Nuclear magnetic resonance. Mod Meth Plant Analysis —NS Vol 2

    Google Scholar 

  • Marion D, Le Roux C, Akoka S, Tellier C, Gallant D (1987) Lipid-protein interactions in wheat gluten: a phosphorus nuclear magnetic resonance spectroscopy and freeze-fracture electron microscopy study. J Cereal Sci 5: 101–115

    Article  CAS  Google Scholar 

  • Marion D, Le Roux C, Tellier C, Akoka S, Gallant D, Gueguen J, Pipineau Y, Compoint JP (1989) Lipid-protein interactions in wheat gluten: a renewal. Abh Akad Wiss DDR, Abt Math Naturwiss Tech 1: 147–152

    Google Scholar 

  • Mills ENC, Spinks CA, Morgan MRA (1989a) A two-site enzyme-linked immunosorbent assay for wheat gliadins. Food Agric Immunol 1: 19–27

    Article  CAS  Google Scholar 

  • Mills ENC, Brett GM, Tätton MJ, Alcocer MJC, Tatham AS, Shewry PR, Morgan MRA ( 1989 b) Monoclonal antibodies as probes of wheat bread-making quality. Agric Food Chem Consum, Proc Eur Conf Food Chem 5: 351–354

    Google Scholar 

  • Mills ENC, Burgess SR, Tatham AS, Shewry PR, Chan HSW, Morgan MRA (1990) Characterization of a panel of monoclonal anti-gliadin antibodies. J Cereal Sci 11: 89–101

    Article  CAS  Google Scholar 

  • Moonen JHE, Hemminga MA, Graveland A (1985) Magnetic resonance spectroscopy of wheat proteins: a magic-angle-spinning carbon-13 nuclear magneric resonance and electron spin resonance spin label study. J Cereal Sci 3: 319–327

    Article  CAS  Google Scholar 

  • O’Donnell DJ, Ackerman JH, Maciel GE (1981) Comparative study of whole seed protein and starch content via cross polarization — magic angle spinning carbon-13 nuclear magnetic resonance spectroscopy. J Agric Food Chem 29: 514–518

    Article  PubMed  Google Scholar 

  • Osborne TB (1907) The proteins of the wheat kernel. Carnegie Inst Washington, Washington, DC, No 84

    Book  Google Scholar 

  • Parker ML, Mills ENC, Morgan MRA (1990) The potential of immuno-probes for locating storage proteins in wheat endosperm and bread. J Sci Food Agric 52: 35–45

    Article  CAS  Google Scholar 

  • Reeves CD, Krishnan HB, Okita TW (1986) Gene expression in developing wheat endosperm. Accumulation of gliadin and ADP glucose pyrophosphorylase messenger RNAs and polypeptides. Plant Physiol 82: 34–40

    Google Scholar 

  • Rutar V (1982) A new possibility for nondestructive protein content determination in viable seeds. Appl Spectrosc 36: 259–260

    Article  CAS  Google Scholar 

  • Schofield JD, Baianu IC (1982) Solid-state, cross-polarization magic-angle spinning carbon-13 nuclear magnetic resonance and biochemical characterization of wheat proteins. Cereal Chem 59: 240–245

    CAS  Google Scholar 

  • Shewry PR, Miflin BJ (1984) Seed storage proteins of economically important cereals. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 7. Am Assoc Cereal Chemists, St Paul, MN, USA, pp 1–83

    Google Scholar 

  • Skerritt JH (1985 a) A sensitive monoclonal-antibody-based test for gluten detection: quantitative immunoassay. J Sci Food Agric 36:987–994

    Google Scholar 

  • Skerrit JH (1985 b) Detection and quantitation of cereal protein in foods using specific enzyme-linked monoclonal antibodies. Food Technol Aust 37:570–572

    Google Scholar 

  • Skerritt JH (1988) Immunochemistry of cereal storage proteins. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 9. Am Assoc Cereal Chemists, St Paul, MN, USA, pp 263–338

    Google Scholar 

  • Skerritt JH (1989) Immunodiagnostic approaches to quality and process control in wheat breeding and utilization. In: Pomeranz Y (ed) Wheat is unique: structure, composition, processing, end-use properties, and products. Am Assoc Cereal Chemists, St Paul, MN, USA, pp 131–159

    Google Scholar 

  • Skerritt JH, Henry RI (1988) Hydrolysis of barley endosperm storage proteins during malting. II. Quantification by enzyme-and radio-immunoassay. J Cereal Sci 7: 265–281

    Google Scholar 

  • Skerritt JH, Hill AS (1989) Detection of glutens with monoclonal antibody-producing hybridoma cells. Brit. UK Pat Appl GB 2,207,921, 15 Feb 1989, 21 pp

    Google Scholar 

  • Skerritt JH, Hill AS (1990a) Monoclonal antibody sandwich enzyme immunoassays for determination of gluten in foods. J Agric Food Chem 38: 1771–1778

    Article  CAS  Google Scholar 

  • Skerritt JH, Hill AS (1990b) Homologies between grain storage proteins of different cereal species. 2. Effects of assay format and grain extractant on antibody cross-reactivity. J Cereal Sci 11: 123–141

    Google Scholar 

  • Skerritt JH, Lew PY (1990) Homologies between grain storage proteins of different cereal species. 1. Monoclonal antibody reaction with total protein extracts. J Cereal Sci 11: 103–121

    Article  CAS  Google Scholar 

  • Skerritt JH, MacRitchie F (1990) Interaction between glutenin polypeptides: simple antibody and

    Google Scholar 

  • HPLC-based methods for prediction of gluten strength. In: Proc ICC’90, Int Assoc Cereal Chemistry, Vienna (Abstr), p 45

    Google Scholar 

  • Skerritt JH, Martinuzzi 0 (1986) Effects of solid phase and antigen solvent on the binding and immunoassay of water-insoluble flour proteins. J Immunol Methods 88: 217–224

    Article  CAS  Google Scholar 

  • Skerritt JH, Robson LG (1990) Wheat low molecular weight glutenin subunits — structural relationship to other gluten proteins analyzed using specific antibodies. Cereal Chem 67:250— 257

    Google Scholar 

  • Skerritt JH, Smith RA (1985) A sensitive monoclonal-antibody-based test for gluten detection: studies with cooked or processed foods. J Sci Food Agric 36: 980–986

    Article  CAS  Google Scholar 

  • Skerritt JH, Underwood PA (1986) Specificity characteristics of monoclonal antibodies to wheat grain storage proteins. Biochim Biophys Acta 874: 245–254

    Article  CAS  Google Scholar 

  • Skerritt JH, Smith RA, Wrigley CW, Underwood PA (1984) Monoclonal antibodies to gliadin proteins used to examine cereal grain protein homologies. J Cereal Sci 2: 215–224

    Article  CAS  Google Scholar 

  • Skerritt JH, Dilent JA, Wrigley CW (1985) A sensitive monoclonal-antibody-based test for gluten detection: choice of primary and secondary antibodies. J Sci Food Agric 36: 995–1003

    Article  CAS  Google Scholar 

  • Skerritt JH, Batey IL, Wrigley CW (1986) New approaches to barley variety identification and quality studies. Proc Cony Inst Brew 19: 55–62

    Google Scholar 

  • Skerritt JH, Martinuzzi 0, Wrigley CW (1987) Monoclonal antibodies in agricultural testing: quantitation of specific wheat gliadins affected by sulfur deficiency. Can J Plant Sci 67: 121–129

    Article  CAS  Google Scholar 

  • Skerritt JH, Lew PY, Castle SL (1988 a) Accumulation of gliadin and glutenin polypeptides during development of normal and sulfur-deficient wheat seed: analysis using specific monoclonal antibodies. J Exp Bot 39: 723–737

    Google Scholar 

  • Skerritt JH, Wrigley CW, Hill AS ( 1988 b) Prospects for the use of monoclonal antibodies in the identification of cereal species, varieties and quality types. In: Konarev VG, Gavrilyuk IP (eds )

    Google Scholar 

  • Biochemical identification of varieties. Inst Plant Industry, Leningrad, USSR, pp 110–123 Skerritt JH, Frend AJ, Robson LG, Greenwell P (1990a) Immunological homologies between wheat gluten and starch granule proteins. J Cereal Sci 12:123 —136

    Google Scholar 

  • Skerritt JH, Devery JM, Hill AS (1990b) Gluten intolerance: chemistry, cellac-toxicity, and detection of prolamins in foods. Cereal Foods World 35: 638–644

    CAS  Google Scholar 

  • Skerritt JH, Wrigley CW, Underwood PA (1990c) Cereal identification using antibodies to characteristic protein, and kits containing the antibodies. Pat Specific (Aust) AU 592,987, Appl 85/401, 2 May 1985, 12 pp

    Google Scholar 

  • Stoyanov S, Tlaskalova-Hogenova H, Kocna P, Kristofova H, Fric P, Hekkens WTJM (1988) Monoclonal antibodies reacting with gliadin as tools for assessing antigenic structures responsible for the exacerbation of celiac disease. Immunol Lett 17: 335–338

    Article  PubMed  CAS  Google Scholar 

  • Tatham AS, Shewry PR, Belton PS (1990) Structural studies of cereal prolamins, including wheat gluten. In: Pomeranz Y (ed) Advances in cereal science and technology, vol 10. Am Assoc Cereal Chemists, St Paul, MN, USA, pp 1–78

    Google Scholar 

  • Vaag P, Munck L (1987) Immunochemical methods in cereal research and technology. Cereal Chem 64: 59–72

    CAS  Google Scholar 

  • Wrigley CW, Bietz JA (1988) Proteins and amino acids. In: Pomeranz Y (ed) Wheat chemistry and technology, vol I, 4th edn. Am Assoc Cereal Chemists, St Paul MN, USA, pp 159–275

    Google Scholar 

  • Wrigley CW, Batey IL, Campbell WP, Skerritt JH (1987 a) Complementing traditional methods of identifying cereal varieties with novel procedures. Seed Sci Technol 15: 679–688

    Google Scholar 

  • Wrigley CW, Skerritt JH, Hill AS (1987b) Test kits for grain proteins. In: Westcott T, Williams Y, Ryken R (eds) Quality control issues in the production of foods and chemicals. Proc 37th Aust Cereal Conf, Royal, Australian Chemical Institute, Melbourne, pp 140–141

    Google Scholar 

  • Wüthrich K (1976) NMR in biological research: peptides and proteins. North-Holland Publ, Amsterdam

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Autran, JC. (1992). Protein Analysis of Wheat by Monoclonal Antibodies and Nuclear Magnetic Resonance. In: Linskens, H.F., Jackson, J.F. (eds) Seed Analysis. Modern Methods of Plant Analysis, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01639-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01639-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01641-1

  • Online ISBN: 978-3-662-01639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics