Skip to main content

Analysis of Seed Proteins, Isozymes, and RFLPs for Genetic and Evolutionary Studies in Phaseolus

  • Chapter
Seed Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 14))

Abstract

Common bean (Phaseolus vulgaris L.) has been used repeatedly as an experimental organism to derive important concepts in genetics. After discovering the rules of segregation and independent assortment governing the inheritance of heritable traits in pea (Pisum sativum L.), Mendel (1865) confirmed his observations on peas in crosses involving P. nanus (nowadays bush P. vulgaris) and P. vulgaris (nowadays climbing P. vulgaris). Johannsen (1909) was instrumental in introducing the distinction between phenotype and genotype following his investigations of seed size in pure lines of P. vulgaris. The first example to our knowledge of a linkage between a marker locus and a quantitative trait locus (QTL) was provided by Sax (1923) who established an association between a locus for seed pigmentation and a seed size factor in common bean. More recently, one of the first plant genes to be cloned was a gene for phaseolin seed protein (Sun et al. 1981). A comparison of the nucleotide sequence of cDNA and genomic clones of phaseolin established the presence of intervening sequences in higher plants in addition to other eukaryotic organisms. Our understanding of how plants defend themselves against pathogens has been considerably enhanced by the studies of Lamb and collaborators (reviewed in Dixon and Lamb 1990) on the relationship between common bean and Colletotrichum lindemuthianum, causal agent of anthracnose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bassett MJ (1989) List of genes. Annu Rep Bean Improv Coop 32: 1–15

    Google Scholar 

  • Bassiri A, Adams MW (1978a) An electrophoretic survey of seedling isozymes in several Phaseolus species. Euphytica 27: 447–459

    Article  CAS  Google Scholar 

  • Bassiri A, Adams MW (1978b) Evaluation of bean cultivar relationships by means of isozyme electrophoretic patterns. Euphytica 27: 707–720

    Article  CAS  Google Scholar 

  • Bendich AJ, Anderson RS, Ward BL (1980) Plant DNA: long, pure, and simple. In: Leaver CJ (ed) Genome organization and expression. Plenum, New York, pp 31–33

    Chapter  Google Scholar 

  • Bliss FA, Brown JWS (1983) Breeding common bean for improved quantity and quality of seed protein. Plant Breed Rev 1: 59–102

    Article  CAS  Google Scholar 

  • Brown AHD (1979) Enzyme polymorphism in plant populations. Theor Popul Biol 15:1–42 Brown JWS, Bliss FA, Hall TC (1981 a) Linkage relationships between genes controlling seed proteins in French beans. Theor Appl Genet 60: 251–259

    Article  Google Scholar 

  • Brown JWS, Ma Y, Bliss FA, Hall TC (1981 b) Genetic variation in the subunits of globulin-1 storage protein of French bean. Theor Appl Genet 59: 83–88

    Google Scholar 

  • Brown JWS, McFerson JR, Bliss FA, Hall TC (1982a) Genetic divergence among commercial classes of Phaseolus vulgaris in relation to phaseolin patterns. HortScience 17: 752–754

    Google Scholar 

  • Brown JWS, Osborn TC, Bliss FA, Hall TC (1982b) Bean lectin 2: relationship between qualitative lectin variation in Phaseolus vulgaris L. and previous observations on purified bean lectins. Theor Appl Genet 62: 361–367

    CAS  Google Scholar 

  • Brown JWS, Osborn TC, Bliss FA, Hall TC (1981 c) Genetic variation in the subunits of globulin-2 and albumin seed proteins of French bean. Theor Appl Genet 60: 245–250

    Google Scholar 

  • Brunk C, Jones K, James T (1979) Assay for nanogram quantities of DNA in cellular homogenates. Anal Biochem 92: 497–500

    Article  PubMed  CAS  Google Scholar 

  • Cardy BJ, Stuber CW, Goodman MM (1980) Techniques for starch gel electrophoresis of enzymes from maize (Zea mays L.). Department of Statistics Mimeo Series No. 1317, North Carolina State University, Raleigh

    Google Scholar 

  • Cesarone C, Bolognesi C, Santi L (1979) Improved fluorometric DNA determination in biological material using 3358 Hoechst. Anal Biochem 100: 188–197

    Article  PubMed  CAS  Google Scholar 

  • Dallas JF (1988) Detection of DNA “fingerprints” of cultivated rice by hybridization with a human minisatellite DNA probe. Proc Natl Acad Sci USA 85: 6831–6835

    Article  PubMed  CAS  Google Scholar 

  • Debouck DG, Magnet A, Posso CE (1989) Biochemical evidence for two different gene pools in lima beans. Annu Rep Bean Improv Coop 32: 58–59

    Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Phys Plant Mol Biol 41: 339–367

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13–15

    Google Scholar 

  • Feinberg AP, Vogelstein B (1984) A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267

    Article  PubMed  CAS  Google Scholar 

  • Fuchs R, Blakesley R (1983) Guide to the use of type II restriction endonucleases. Methods Enzymol 100: 3–38

    Article  PubMed  CAS  Google Scholar 

  • Garrido B, Nodari R, Debouck DG, Gepts P (1991) Uni-2, a dominant mutation affecting leaf development in Phaseolus vulgaris. J Hered 82: 181–183

    Google Scholar 

  • Garvin DF, Roose ML, Waines JG (1989) Isozyme genetics and linkage in tepary bean, Phaseolus acutifolius A. Gray. J Hered 80: 373–376

    Google Scholar 

  • Gepts P (1988a) Phaseolin as an evolutionary marker. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, pp 215–241

    Chapter  Google Scholar 

  • Gepts P ( 1988 b) A Middle American and an Andean gene pool. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, pp 375–390

    Google Scholar 

  • Gepts P (1990a) Biochemical evidence bearing on the domestication of Phaseolus beans. Econ Bot 44 (3): S28 — S38

    Article  Google Scholar 

  • Gepts P (1990b) Genetic diversity of seed storage proteins in plants. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, MA, pp 64–82

    Google Scholar 

  • Gepts P, Bliss FA (1985) F1 hybrid weakness in the common bean: differential geographic origin suggests two gene pools in cultivated bean germplasm. J Hered 76: 447–450

    Google Scholar 

  • Gepts P, Bliss FA (1986) Phaseolin variability among wild and cultivated common beans (Phaseolus vulgaris) from Colombia. Econ Bot 40: 469–478

    Article  CAS  Google Scholar 

  • Gepts P, Clegg MT (1989) Genetic diversity in pearl millet (Pennisetum glaucum L. R. Br.) at the DNA sequence level. J Hered 80: 203–208

    Google Scholar 

  • Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean, Phaseolus vulgaris. In: Voysest O, Van Schoonhoven A (eds) Common beans: research for crop improvement. CIAT, Cali, Colombia, pp 7–53

    Google Scholar 

  • Gepts P, Osborn TC, Rashka K, Bliss FA (1986) Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris): evidence for multiple centers of domestication. Econ Bot 40: 451–468

    Article  CAS  Google Scholar 

  • Gepts P, Singh S, Nodari R, Garrido B, Koinange E (1990) Towards an integrated linkage map of common bean (Phaseolus vulgaris L.). J Cell Biochem (Suppl) 14E: 281

    Google Scholar 

  • Gottlieb LD (1981) Electrophoretic evidence and plant populations. Progr Phytochem 7:1–46 Hames BD (1981) An introduction to polyacrylamide gel electrophoresis. In: Hames BD, Rickwood D (eds) Gel electrophoresis of proteins. IRL, Oxford, pp 1–91

    Google Scholar 

  • Hames BD, Rickwood D (1981) Gel electrophoresis of proteins: a practical approach. IRL, Oxford Hamrick JL, Godt MJW ( 1990 ) Allozyme diversity in plant species. In: Brown AHD, Clegg MT

    Google Scholar 

  • Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, MA, pp 43— 63

    Google Scholar 

  • Helentjaris T, Burr B (1989) Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Hillis DM, Moritz C (1990) Molecular systematics. Sinauer, Sunderland, MA

    Google Scholar 

  • Hoffman LM, Donaldson DD (1985) Characterization of two Phaseolus vulgaris phytohemagglutinin genes closely linked on the chromosome. EMBO J 4: 883–889

    PubMed  CAS  Google Scholar 

  • Holmes DS, Quigley M (1981) A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem 114:193–197

    Article  Google Scholar 

  • Hunter RL, Markert CL (1957) Histochemical demonstration of enzymes separated by zone electrophoresis in starch gels. Science 125: 1294–1295

    Article  PubMed  CAS  Google Scholar 

  • International Union of Biochemistry (1984) Enzyme nomenclature. Acad Press, New York Jeffreys Ai, Wilson V, Thein SL (1985) Hpyervariable minisatellite’ regions in human DNA. Nature 314: 67–73

    Article  Google Scholar 

  • Johannsen W (1909) Elemente der exakten Erblichkeitslehre. Fischer, Jena, Germany

    Google Scholar 

  • Johnson FM, Schaffer HE (1974) An inexpensive apparatus for horizontal gel electrophoresis. Isozyme Bull 7: 4–6

    Google Scholar 

  • Koenig R, Gepts P (1989 a) Segregation and linkage of genes for seed proteins, isozymes, and morphological traits in common bean (Phaseolus vulgaris). J Hered 80: 455–459

    Google Scholar 

  • Koenig R, Gepts P (1989 b) Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of diversity. Theor Appl Genet 78: 809–817

    Google Scholar 

  • Koenig R, Singh SP, Gepts P (1990) Novel phaseolin types in wild and cultivated common bean (Phaseolus vulgaris, Fabaceae ). Econ Bot 44: 50–60

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685

    Article  PubMed  CAS  Google Scholar 

  • Lioi L (1989a) Geographical variation of phaseolin patterns in an old world collection of Phaseolus vulgaris. Seed Sci Technol 17: 317–324

    Google Scholar 

  • Lioi L (1989b) Variation of the storage protein phaseolin in common bean (Phaseolin vulgaris L.) from the Mediterranean area. Euphytica 44: 151–155

    Article  CAS  Google Scholar 

  • Ma Y, Bliss FA (1978) Seed proteins of common bean. Crop Sci 17: 431–437

    Article  Google Scholar 

  • Manen JF, Otoul E (1981) Etudes électrophorétiques et détermination des fractions protéiques principales chez quelques cultivars élites de Phaseolus lunatus L. et de Phaseolus vulgaris L. Bull Rech Agron Gembloux 16: 309–326

    CAS  Google Scholar 

  • Markert CL, Moller F (1959) Multiple forms of enzymes: tissue, ontogenetic and species specific patterns. Proc Natl Acad Sci USA 45: 753–763

    Article  PubMed  CAS  Google Scholar 

  • McLeester RC, Hall TC, Sun SM, Bliss FA (1973) Comparison of globulin proteins from Phaseolus vulgaris with those of Vicia faba. Phytochemistry 2: 85–93

    Article  Google Scholar 

  • Mendel G (1865) Experiments on plant hybrids. In: Stern C, Sherwood ER (eds) The origin of genetics. Freeman, San Francisco, pp 1–48

    Google Scholar 

  • Murphy RW, Sites JW Jr, Buth DG, Haufler CH (1990) Proteins I: isozyme electrophoresis. In: Hillis DM, Moritz C (eds) Molecular systematics. Sinauer, Sunderland, MA, pp 45–126

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucl Acid Res 8: 4322–4325

    Article  Google Scholar 

  • Myers JR, Weeden NF (1988) A proposed revision of guidelines for genetic analysis in Phaseolus vulgaris L. Annu Rep Bean Improv Coop 31: 16–19

    Google Scholar 

  • O’Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250: 4007–4021

    PubMed  Google Scholar 

  • Osborn TC (1988) Genetic control of bean seed protein. CRC Crit Rev Plant Sci 7:93–116 Osborn TC, Bliss FA (1985) Effects of genetically removing lectin seed protein on horticultural and seed characteristics of common bean. J Am Soc Hortic Sci 110: 484–488

    Google Scholar 

  • Osborn TC, Brown JWS, Bliss FA (1985) Bean lectin 5: quantitative genetic variation in seed lectins of Phaseolus vulgaris and its relationship to qualitative genetic variation. Theor Appl Genet 70: 22–31

    Article  CAS  Google Scholar 

  • Osborn TC, Blake T, Gepts P, Bliss FA (1986) Bean arcelin. 2. Genetic variation, inheritance and linkage relationships of a novel seed protein of Phaseolus vulgaris. Theor Appl Genet 71: 847–855

    Article  CAS  Google Scholar 

  • Osborn TC, Alexander DC, Sun SSM, Cardona C, Bliss FA (1988) Insecticidal activity and lectin homology of arcelin seed protein. Science 240: 207–210

    Article  CAS  Google Scholar 

  • Osborne TB (1907) The vegetable proteins. Longmans and Green, London

    Google Scholar 

  • Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplast DNA variation. Am Nat 130: 56 — S29

    Article  Google Scholar 

  • Pasteur N, Pasteur G, Bonhomme F, Catalan J, Britton-Davidian J (1988) Practical isozyme genetics. Ellis Horwood, Chichester

    Google Scholar 

  • Pusztai A (1966) The isolation of two proteins, glycoprotein I and a trypsin inhibitor, from seed of kidney bean (Phaseolus vulgaris). Biochem J 101: 379–384

    PubMed  CAS  Google Scholar 

  • Pusztai A, Watt WB (1970) Glycoprotein. II. The isolation and characterization of a major antigenic and non-hemagglutinating glycoprotein from Phaseolus vulgaris. Biochim Biophys Acta 207:413–431

    Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp A6: 1–10

    Google Scholar 

  • Rogstad SH, Patton JC II, Schaal BA (1988) M13 repeat probe detects DNA minisatellite-like sequences in gymnosperms and angiosperms. Proc Natl Acad Sci USA 85: 9176–9178

    Article  PubMed  CAS  Google Scholar 

  • Romero-Andreas J, Yandell BS, Bliss FA (1986) Bean arcelin. 1. Inheritance of a novel seed protein of Phaseolus vulgaris L. and its effect on seed composition. Theor Appl Genet 72:123–128

    Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 8014–8018

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sax K (1923) The association of size differences with seed coat pattern and pigmentation in Phaseolus vulgaris. Genetics 8: 552–560

    PubMed  CAS  Google Scholar 

  • Schinkel C, Gepts P (1988) Phaseolin diversity in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed 101:292— 301

    Google Scholar 

  • Schinkel C, Gepts P (1989) Allozyme variability in the tepary bean, Phaseolus acutifolius A. Gray. Plant Breed 102: 182–195

    Google Scholar 

  • Schuler MA, Zielinski RE (1989) Methods in plant molecular biology. Acad Press, San Diego

    Google Scholar 

  • Selander RK, Smith MH, Yang SY, Johnson WE, Gentry JR (1971) Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old-field mouse (Peromyscus polionotus). Stud Genet VI Univ Texas Publ 7103: 49–90

    Google Scholar 

  • Selden RF, Chory J (1987) Isolation and purification of large DNA restriction fragments from agarose gels. In: Ausubel FM, Brent R, Kingston R, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 2.6.1–2. 6. 8

    Google Scholar 

  • Shaw CR, Prasad R (1970) Starch gel electrophoresis: a compilation of recipes. Biochem Genet 4:297–320

    Google Scholar 

  • Shii CT, Mok MC, Temple SR, Mok DWS (1980) Expression of developmental abnormalities in hybrids of Phaseolus vulgaris L. J Hered 71: 218–222

    Google Scholar 

  • Singh SP, Gutiérrez AJ (1984) Geographical distribution of the DL1 and DL2 genes causing hybrid dwarfism in Phaseolus vulgaris L., their association with seed size, and their significance to breeding. Euphytica 33: 337–345

    Article  Google Scholar 

  • Singh SP, Debouck DG, Gepts P (1989) Races of common bean, Phaseolus vulgaris L. In: Beebe S (ed) Current topics in breeding of common bean, Proc Int Bean Breed Workshop. CIAT, Cali, Colombia, pp 75–89

    Google Scholar 

  • Singh SP, Gutiérrez JA, Molina A, Urrea C, Gepts P ( 1991 a) Genetic diversity in cultivated common bean II. Marker-based analysis of morphological and agronomic traits. Crop Sci 31: 23–29

    Google Scholar 

  • Singh SP, Nodari R, Gepts P ( 1991 b) Genetic diversity in cultivated common bean. I. Allozymes. Crop Sci 31: 19–23

    Google Scholar 

  • Slightom JL, Drong RF, Klassy RC, Hoffman LM (1985) Nucleotide sequences from phaseolin cDNA clones: the major storage proteins from Phaseolus vulgaris are encoded by two unique gene families. Nucl Acid Res 13: 6483–6498

    Article  CAS  Google Scholar 

  • Soltis DE, Soltis PS (1989) Isozymes in plant biology. Dioscorides, Portland, OR

    Google Scholar 

  • Sprecher SL (1988) Allozyme differentiation between gene pools in common bean (Phaseolus vulgaris L.), with special reference to Malawian germplasm. PhD Thesis, Michigan State University, East Lansing, MI

    Google Scholar 

  • Sprecher SL, Vallejos CE (1989) System/tissue/enzyme combinations for starch gel electrophoresis of bean. Annu Rep Bean Improv Coop 32: 32–33

    Google Scholar 

  • Staswick P, Chapell J, Voelker T, Vitale A, Chrispeels M (1986) Molecular biology of seed storage proteins and lectins. In: Shannon LM, Chrispeels M (eds) Proc 9th Annu Symp Plant Phys Univ of California, Riverside, 9–11 January 1986. Am Soc Plant Phys, Rockville, MD, pp 107–115

    Google Scholar 

  • Stebbins GL (1989) Introduction. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides, Portland, OR, pp 1–14

    Chapter  Google Scholar 

  • Stegemann H, Pietsch G (1983) Methods for quantitative and qualitative characterization of seed proteins of cereals and legumes. In: Gottschalk W, Müller HP (eds) Seed proteins: biochemistry, genetics, nutritive value. Martinus Nijhoff/Dr. W. Junk, The Hague, pp 45–75

    Google Scholar 

  • Studier FW (1973) Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79: 237–248

    Article  PubMed  CAS  Google Scholar 

  • Sun SM, Slightom JL, Hall TC (1981) Intervening sequences in a plant gene — comparison of the partial sequence of cDNA and genomic DNA of French bean phaseolin. Nature 289: 37–41

    Article  CAS  Google Scholar 

  • Talbot DR, Adang MJ, Slightom JL, Hall TC (1984) Size and organization of a multigene family encoding phaseolin, the major seed storage protein of Phaseolus vulgaris L. Mol Gen Genet 198: 42–49

    Article  CAS  Google Scholar 

  • Tanksley SD, Orton TJ (1983) Isozymes in plant genetics and breeding. Elsevier, Amsterdam Vallejos CE (1983) Enzyme activity staining. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding. Elsevier, Amsterdam, pp 469–516

    Google Scholar 

  • Wall JR, Wall SW (1975) Isozyme polymorphisms in the study of evolution in the Phaseolus vulgaris-R. coccineus complex of Mexico. In: Markert CL (ed) Isozymes IV. Acad Press, New York, pp 287–305

    Google Scholar 

  • Weber K, Osborn M (1969) The reliability of molecular weight determinations by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. J Biol Chem 244: 4406–4412

    PubMed  CAS  Google Scholar 

  • Weeden NF (1984a) Distinguishing among white-seeded bean cultivars by means of allozyme genotypes. Euphytica 33: 199–208

    Article  CAS  Google Scholar 

  • Weeden NF (1984 b) Linkage between the gene coding the small subunit of ribulose biphosphate carboxylase and the gene coding malic enzyme in Phaseolus vulgaris. Annu Rep Bean Improv Coop 27:123–124

    Google Scholar 

  • Weeden NF (1986a) Enzyme loci defined in Phaseolus vulgaris. Annu Rep Bean Improv Coop 29–53

    Google Scholar 

  • Weeden NF (1986 b) Genetic confirmation that the variation in the zymograms of 3 enzyme systems is produced by allelic polymorphism. Annu Rep Bean Improv Coop 29:117–118

    Google Scholar 

  • Weeden NF, Liang CY (1985) Detection of a linkage between white flower color and Est-2 in common bean. Annu Rep Bean Improv Coop 28: 87–88

    Google Scholar 

  • Wendel JF, Weeden NF (1989) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides, Portland, OR, pp 5–45

    Chapter  Google Scholar 

  • Yuan R (1981) Structure and mechanisms of multifunctional restriction endonucleases. Annu Rev Biochem 50: 285–316

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gepts, P., Llaca, V., Nodari, R.O., Panella, L. (1992). Analysis of Seed Proteins, Isozymes, and RFLPs for Genetic and Evolutionary Studies in Phaseolus . In: Linskens, H.F., Jackson, J.F. (eds) Seed Analysis. Modern Methods of Plant Analysis, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01639-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01639-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01641-1

  • Online ISBN: 978-3-662-01639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics