Skip to main content

Analysis of Cereal Starches

  • Chapter
Seed Analysis

Part of the book series: Modern Methods of Plant Analysis ((MOLMETHPLANT,volume 14))

Abstract

The starchy endosperm of the mature cereal caryopsis contains 60% – 70% starch which is the stable reserve polysaccharide of the seed, but there are also small amounts of starch in the pericarp of developing grain and in the embryo, scutellum of germinating grain which are transient in nature. This chapter is concerned only with endosperm starches. The views expressed below and the recommended analytical methods differ appreciably from many of those in the standard texts (Whistler 1964; Radley 1968; Ullmann 1973; Banks and Greenwood 1975; Radley 1976; Whistler et al. 1984) — this reflects our improved understanding of cereal starches and new developments in analytical methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AACC (1984) Damaged Starch Method 76–30A. In: Approved methods of the American Association of Cereal Chemists, 8th edn. AACC, St. Paul, MN, 2 pp

    Google Scholar 

  • Adkins GK, Greenwood CT (1966) The isolation of cereal starches in the laboratory. Starch/Stärke 18:213 —218

    Google Scholar 

  • Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomena. Cereal Foods World 33:306, 308, 310, 311

    Google Scholar 

  • Baba T, Uemura R, Hiroto M, Arai Y (1987) Structural features of amylomaize starch. Denpun Kagaku 34:196 —202, 213 —217

    Google Scholar 

  • Banks W, Greenwood CT (1975) Starch and its components. Edinburgh Univ Press, Edinburgh

    Google Scholar 

  • Blanshard JMV (1979) Physiochemical aspects of starch gelatinisation. In: Blanshard JMV, Mitchell JR (eds) Polysaccharides in food. Butterworths, London, pp 139–152

    Google Scholar 

  • Blanshard JMV (1986) The significance of the structure and function of the starch granule in baked products. In: Blanshard JMV, Frazier PJ, Galliard T (eds) Chemistry and physics of baking. R Soc Chem, London, pp 1–13

    Google Scholar 

  • Blanshard JMV (1987) Starch granule structure and function: a physicochemical approach. In: Galliard T (ed) Starch properties and potential. John Wiley and Sons, Chichester, pp 16–54

    Google Scholar 

  • Burt DJ, Russell PL (1983) Gelatinisation of low water content wheat starch-water mixtures. A combined study by differential scanning calorimetry and light microscopy. Starch/Stärke 35: 354–360

    Google Scholar 

  • Decker P, Holler H (1962) A time gradient method for fractionating granular materials particularly ion exchange materials through sedimentation. J Chromatogr 7: 392–399

    Article  CAS  Google Scholar 

  • Donovan JW (1979) Phase transitions of the starch-water system. Biopolymers 18:263–275 Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350–356

    Google Scholar 

  • Duprat F, Gallant D, Guilbot A, Mercier C, Robin JP (1980) L’Amidon (starch). In: Monties B (ed) Les polymères végétaux. Gauthier-Villars, Paris, pp 176–231

    Google Scholar 

  • Farrand EA (1964) Flour properties in relation to the modern bread processes in the United Kingdom with special reference to a-amylase and starch damage. Cereal Chem 41: 98–111

    CAS  Google Scholar 

  • French AD, Murphy VG (1977) Computer modelling in the study of starch. Cereal Foods World 22:61— 70

    Google Scholar 

  • Gidley MJ, Robinson G (1990) Techniques for studying interactions between polysaccharides. In: Dey PM, Holborne JB (eds) Methods in plant biochemistry, vol 2. Acad Press, London, pp 607–642

    Chapter  Google Scholar 

  • Gidley MJ, Bulpin PV, Kay S (1986) Effect of chain length on amylose retrogradation. In: Philips GO, Wedlock DJ, Williams PA (eds) Gums and stabilisers for the food industry, vol 3. Elsevier Applied Science, London, pp 167–176

    Google Scholar 

  • Goldner WR, Boyer CD (1989) Starch granule bound proteins and polypeptides: the influence of the waxy mutations. Starch/Stärke 41: 250–254

    Article  CAS  Google Scholar 

  • Greenwell P, Schofield JD (1986) A starch granule protein associated with endosperm softness. Cereal Chem 63: 379–380

    CAS  Google Scholar 

  • Hizukuri S (1986) Polymodal distribution of the chain lengths of amylopectin and its significance. Carbohydr Res 147: 342–347

    Article  CAS  Google Scholar 

  • Hizukuri S, Hisatsuka T (1976) Studies on the determination of wheat starch phosphorus as glycerol phosphates. J Agric Chem Soc Jpn 50: 489–494

    CAS  Google Scholar 

  • Hizukuri S, Takagi T (1984) Estimation of the distribution of the molecular weight for amylose by low-angle laser-light scattering technique combined with high-performance gel chromatography. Carbohydr Res 134: 1–10

    Article  CAS  Google Scholar 

  • Hizukuri S, Tabata S, Nikuni Z (1970) Starch phosphate. 1. Estimation of glucose 6-phosphate residues in starch and the presence of other bound phosphate(s). Starch/Stärke 22: 338–343

    Article  CAS  Google Scholar 

  • Karkalas J (1985) An improved enzymic method for the determination of native and modified starch. J Sci Food Agric 36:1019–1027

    Google Scholar 

  • Karkalas J, Tester RF (1992) Continuous enzymic determination of a-glucans in eluates from gel-chromatographic columns. J Cereal Sci 15:175 —180

    Google Scholar 

  • Karkalas J, Tester RF, Morrison WR (1992) Properties of damaged starch granules I. A new micromethod for the enzymatic determination of damaged and gelatinized starch. J Cereal Sci (in press)

    Google Scholar 

  • Koehler LH (1952) Differentiation of carbohydrates by anthrone reaction rate and color intensity. Anal Chem 24:1578 —1579

    Google Scholar 

  • Kodama M, Noda H, Kamata T (1978) Conformation of amylose in water. I. Light scattering and sedimentation equilibrium measurements. Biopolymers 17:985 —1002

    Google Scholar 

  • Manners DJ (1989a) Recent developments in our understanding of amylopectin structure. Carbohydr Polym 11: 87–112

    Article  CAS  Google Scholar 

  • Manners DJ (1989 b) Some aspects of the structure of starch and glycogen. Denpun Kagaku 36:311–323

    Google Scholar 

  • McDonald AML, Stark JR (1988) A critical examination of procedures for the isolation of barley starch. J Inst Brew 94: 125–132

    Article  Google Scholar 

  • McDonald AML, Stark JR, Morrison WR, Ellis RP (1991) Composition of starch granules from developing barley genotypes. J Cereal Sci 13:93— 112

    Google Scholar 

  • Mercier C, Kainuma K (1975) Enzymic debranching of starches from maize of various genotypes in high concentrations of dimethyl sulfoxide. Starch/Stärke 27: 289–292

    Article  CAS  Google Scholar 

  • Morrison WR (1964) A fast simple and reliable method for the determination of phosphorus in biological materials. Anal Biochem 7: 218–224

    Article  PubMed  CAS  Google Scholar 

  • Morrison WR (1981) Starch lipids: a reappraisal. Starch/Stärke 33: 408–410

    Article  CAS  Google Scholar 

  • Morrison WR (1988 a) Lipids in cereal starches: a review. J Cereal Sci 8:1–15

    Google Scholar 

  • Morrison WR (1988 b) Lipids. In: Pomeranz Y (ed) Wheat: chemistry and technology, 3rd edn, vol 1. Am Assoc Cereal Chem, St Paul MN, pp 373 —439

    Google Scholar 

  • Morrison WR (1989) Uniqueness of wheat starch. In: Pomeranz Y (ed) Wheat is unique. Am Assoc Cereal Chem, St Paul, MN, pp 193–214

    Google Scholar 

  • Morrison WR, Coventry AM (1985) Extraction of lipids from cereal starches with hot aqueous alcohols. Starch/Stärke 37: 83–87

    Article  CAS  Google Scholar 

  • Morrison WR, Gadan H (1987) The amylose and lipid contents of starch granules in developing wheat endosperm. J Cereal Sci 5: 263–275

    Article  CAS  Google Scholar 

  • Morrison WR, Karkalas J (1990) Starch. In: Dey PM (ed) Methods in plant biochemistry, vol 2. Acad Press, London, pp 323 —352

    Google Scholar 

  • Morrison WR, Laignelet B (1983) An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J Cereal Sci 1: 9–20

    Article  CAS  Google Scholar 

  • Morrison WR, Scott DC (1986) Measurement of the dimensions of wheat starch granule popula tions using a Coulter Counter with 100-channel analyzer. J Cereal Sci 4: 13–21

    Article  Google Scholar 

  • Morrison WR, Mann DL, Wong S, Coventry AM (1975) Selective extraction and quantitative anal ysis of nonstarch and starch lipids from wheat flour. J Sci Food Agric 26: 507–521

    Article  PubMed  CAS  Google Scholar 

  • Morrison WR, Tan SL, Hargin KD (1980) Methods for the quantitative analysis of lipids in cereal grains and similar tissues. J Sci Food Agric 31: 329–340

    Article  PubMed  CAS  Google Scholar 

  • Morrison WR, Milligan TP, Azudin MN (1984) A relationship between the amylose and lipid contents of starches from diploid cereals. J Cereal Sci 2: 257–271

    Article  CAS  Google Scholar 

  • Morrison WR, Scott DC, Karkalas J (1986) Variation in the composition and physical properties of barley starches. Starch/Stärke 38: 374–379

    Article  CAS  Google Scholar 

  • Morrison WR, Greenwell P, Law CN, Sulaiman BD (1992) Occurrence of friabilin, a low molecular weight protein associated with grain softness, on starch granules isolated from some wheats and related species. J Cereal Sci 15:143 —149

    Google Scholar 

  • Nesse WD (1986) Introduction to optical mineralogy. Oxford Univ Press, Oxford

    Google Scholar 

  • Osborne DR, Voogt P (eds) (1978) The analysis of nutrients in foods. Academic Press, London, pp 175 —178

    Google Scholar 

  • Ough LD (1964) Chromatographic determination of saccharides in starch hydrolyzate. In: Whistler RL (ed) Methods in carbohydrate chemistry, vol 4. Acad Press, New York, pp 91–98

    Google Scholar 

  • Pfannemüller B (1986) Models for the structure and properties of starch. Starch/Stärke 38: 401–407

    Article  Google Scholar 

  • Pfannemüller B, Mayerhofer H, Schulz RC (1971) Conformation of amylose in aqueous solution: optical rotary dispersion and circular dichroism of amylose-iodine complexes and dependance on chain-length of retrogradation of amylose. Biopolymers 10: 243–261

    Article  Google Scholar 

  • Praznik W (1985) Application of gel permeation chromatography for the analytical estimation of starches. Ernährung/Nutrition 9: 834–849

    Google Scholar 

  • Praznik W (1986) GPC analysis of starch polysaccharides. Starch/Stärke 38:292–296 Radley JA (1968) Starch and its derivatives, 4th edn. Chapman and Hall, London

    Google Scholar 

  • Radley JA (1976) Examination and analysis of starch and starch products. Applied Science, London

    Book  Google Scholar 

  • Robyt JF, Bemis S (1967) Use of the autoanalyzer for determining the blue value of the amylose iodine complex and total carbohydrate by phenol sulfuric acid. Anal Biochem 19: 56–60

    Article  PubMed  CAS  Google Scholar 

  • Sargeant JG (1982) Determination of amylose: amylopectin ratios of starches. Starch/Stärke 34: 89–92

    Article  CAS  Google Scholar 

  • Soulaka AB, Morrison WR (1985) The amylose and lipid contents dimensions and gelatinisation characteristics of some wheat starches and their A- and B-granule fractions. J Sci Food Agric 36: 709–718

    Article  CAS  Google Scholar 

  • South JB, Morrison WR (1990) Isolation and analysis of starch from single kernels of wheat and barley. J Cereal Sci 12: 43–51

    Article  CAS  Google Scholar 

  • South JB, Morrison WR, Nelson OE (1991) A relationship between the amylose and lipid contents of starches from various mutants of maize. J Cereal Sci 14: 267–278

    Article  CAS  Google Scholar 

  • Sulaiman BD, Morrison WR (1990) Proteins associated with the surface of wheat starch granules purified by centrifuging through caesium chloride. J Cereal Sci 12: 53–61

    Article  CAS  Google Scholar 

  • Tabata S, Nagata K, Hizukuri S (1975) Studies on starch phosphates. 3. Esterified phosphates of some cereal starches. Starch/Stärke 27: 333–335

    Google Scholar 

  • Takagi T, Hizukuri S (1984) Molecular weight and related properties of amylose determined by monitoring of elution from TSK gel PW high performance gel chromatography columns by the low angle laser light scattering technique and precision differential refractometry. J Biochem 95: 1459–1467

    PubMed  CAS  Google Scholar 

  • Takeda Y, Hizukuri S, Juliano BO (1987) Structure of rice amylopectins with low and high affinities for iodine. Carbohydr Res 168: 79–88

    Article  CAS  Google Scholar 

  • Takeda Y, Suzuki A, Hizukuri S (1988) Influence of steeping conditions for kernels on some properties of corn starch. Starch/Stärke 40: 132–135

    Article  Google Scholar 

  • Tester RF, Morrison WR (1990a) Swelling and gelatinization of cereal starches. I. Effects of amylopectin amylose and lipids. Cereal Chem 67: 551–557

    Google Scholar 

  • Tester RF, Morrison WR (1990b) Swelling and gelatinization of cereal starches. II. Waxy rice starches. Cereal Chem 67: 551–557

    Google Scholar 

  • Tester RF, South JB, Morrison WR, Ellis RP (1991) The effect of ambient temperature during the grain filling period on the composition and properties of starch from four barley genotypes. J Cereal Sci 13: 113–127

    Article  CAS  Google Scholar 

  • Ullmann M (1973) Handbuch der Stärke in Einzeldarstellungen, vol VII, part 2. Analytische Kennzeichnung von Amylose and Amylopectin. Paul Parey, Berlin

    Google Scholar 

  • Whistler RL (1964) Methods in carbohydrate chemistry, vol 4. Acad Press, New York

    Google Scholar 

  • Whistler RL, BeMiller JN, Paschall EF (1984) Starch: chemistry and technology, 2nd edn. Acad Press, Orlando

    Google Scholar 

  • Wild D, Blanshard JMV (1986) The relationship of the crystal structure of amylose polymorphs to the structure of the starch granule. Carbohydr Polym 6: 121–143

    Article  CAS  Google Scholar 

  • Yu L-P, Rollings JE (1987) Low angle laser light scattering aqueous size exclusion chromatography of polysaccharides. Molecular weight distribution and polymer branching determination. J Appl Polym Sci 33: 1909–1921

    Article  CAS  Google Scholar 

  • Zobel HF (1964) In: Whistler RL (ed) Methods in carbohydrate chemistry, vol 4, Starch. Acad Press, New York, pp 109–113

    Google Scholar 

  • Zobel HF (1988a) Starch crystal transformations and their industrial importance. Starch/Stärke 40: 1–7

    Article  CAS  Google Scholar 

  • Zobel HF (1988 b) Molecules to granules: a comprehensive starch review. Starch/Stärke 40:44–50

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Morrison, W.R. (1992). Analysis of Cereal Starches. In: Linskens, H.F., Jackson, J.F. (eds) Seed Analysis. Modern Methods of Plant Analysis, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01639-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01639-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01641-1

  • Online ISBN: 978-3-662-01639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics