Skip to main content

The Principal Aspects of Sensitivity Theory

  • Chapter
Theory of Sensitivity in Dynamic Systems

Abstract

This chapter summarizes a list of definitions pertinent to sensitivity theory as applied in control theory. The fundamental aspects of sensitivity analysis are reviewed in Sections 2.3 and 2.4, followed by discussions on the preliminary mathematics and aspects of system theory in Sections 2.5 and 2.6. The chapter closes with a brief discussion on synthesis and the H -sensitivity minimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

[A] General Mathematical References

  1. N.I. Akhiezer and LM Glazman, Theory of Linear Operators in Hibert Space, Two Volumes. [Translated from Russian by M. Nestell.] New York: Frederick Ungar Pub. Co., second printings, Volume I, 1966, Volume II, 1963.

    Google Scholar 

  2. C. Caratheodory, Algebraic Theory of Measure and Integration. [Translated from German by F.E.J. Linton.] New York: Chelsea, 1986.

    MATH  Google Scholar 

  3. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations. New York: McGraw-Hill, 1955. ( Reprint, R.E. Krieger, 1984 ).

    Google Scholar 

  4. R. Courant and D. Hilbert, Methods of Mathematical Physics, Two Volumes. New York: Wiley (Classics Edition ), 1989.

    Book  Google Scholar 

  5. N. Dunford and J.T. Schwartz, Linear Operators, Three Volumes. Part L General Theory. Part II: Spectral Theory. Part HI: Spectral Operators. New York: Wiley (Classics Edition ), 1988.

    Google Scholar 

  6. P.L. Duren, Theory of Hp Spaces. New York: Academic Press, 1970.

    Google Scholar 

  7. J.N. Franklin, Matrix Theory. Englewood Cliffs, NJ: Prentice-Hall, 1968.

    MATH  Google Scholar 

  8. F.R. Gantmacher, The Theory of Matrices I. New York: Chelsea, 1959.

    Google Scholar 

  9. P.R. Garabedian, Partial Differential Equations. New York: Wiley, 1964. (Reprint, Chelsea, 1986.)

    Google Scholar 

  10. G.H. Hardy, J.E. Littlewood, and G. Polya, Inequalities: London: Cambridge University Press, 1934.

    Google Scholar 

  11. T. Hawkins, Lebesgue’s Theory of Integration, its origin and development. New Yoric Chelsea, 1979.

    Google Scholar 

  12. H. Hochstadt, Integral Equations. New York: Wiley (Classics Edition), 1989. The 1973 edition is reviewed by M. Yanowitch, SIAM R., vol. 18, no. 4, p. 782, 1976.

    Google Scholar 

  13. A.S. Householder, The Theory of Matrices in Numerical Analysis. New York: Dover, 1975.

    MATH  Google Scholar 

  14. J L Kelley, General Topology. Princeton, NJ: D. Van Nostrand, 1955.

    MATH  Google Scholar 

  15. S. MacLane and G. Birkhoff, Algebra. New York: Macmillan, 1967. (2nd edition, 1979.)

    Google Scholar 

  16. W.S. Massey, A Basic Course in Algebraic Topology. New York: Springer — Verlag, 1991.

    MATH  Google Scholar 

  17. J.R. Munkres, Topology, a first course. Englewood Cliffs, NJ: Prentice-Hall, 1975.

    MATH  Google Scholar 

  18. R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain. Providence, RI: American Mathematical Society, 1934. (Fifth printing, 1964.)

    Google Scholar 

  19. C.E. Pearson, Ed., Handbook of Applied Mathematics, selected results and methods. New York: Van Nostrand, 1974

    MATH  Google Scholar 

  20. M. Reed and B. Simon, Methods of Modern Mathematical Physics. Volume I: Functional Analysis. Volume H: Fourier Analysis, Self-Adjointness. New York: Academic Press, Volume I, 1972, Volume II, 1975.

    Google Scholar 

  21. K. Rektorys, Ed., Survey of Applicable Mathematics. Cambridge, MA: MIT Press, 1969.

    MATH  Google Scholar 

  22. F. Riesz and B. Nagy, Functional Analysis. [Translated from the 2nd French edition by L.F. Boron.] New York: Dover, 1990.

    MATH  Google Scholar 

  23. W. Rudin, Principles of Mathematical Analysis. New York: McGraw-Hill, 1964.

    MATH  Google Scholar 

  24. W. Rudin, Real and Complex Analysis. New York: McGraw-Hill, 1974.

    MATH  Google Scholar 

  25. W. Rudin, Fourier Analysis on Groups. New York Wiley (Classics Edition), 1990.

    Google Scholar 

  26. W. Rudin, Functioanl Analysis. New York: McGraw-Hill, 2nd edition, 1991.

    Google Scholar 

  27. L. Sirovich, Techniques of Asymptotic Analysis. New York: Springer - Verlag, 1971.

    Book  MATH  Google Scholar 

  28. I.N. Sneddon, The Use of Integral Transforms. New York: McGraw-Hill, 1972. Reviewed by W.L. Perry, JFI, vol. 300, no. 1, p. 79, 1975.

    Google Scholar 

  29. E.H. Spanier, Algebraic Topology. New York: McGraw-Hill, 1966. [This entry is suggested by Prof. J. Wood of the University of Illinois at Chicago.]

    Google Scholar 

  30. I. Stakgold, Boundary Value Problems of Mathematical Physics, Two Volumes. New York: Macmillan, Volume I, 6th printing, 1972, Volume II, 2nd printing, 1971. The 1968 edition of Volume II is reviewed by R.B. Guenther, SIAM R., vol. 11, no. 2, p. 289, 1969.

    Google Scholar 

  31. I. Stakgold, Green’s Functions and Boundary Value Problems. New York: Wiley, 1979. Reviewed by W. Kaplan, SIAM R., vol. 23, no. 1, pp. 117–118, 1981.

    Google Scholar 

  32. B. Van Der Pol and H. Bremmer, Operational Calculus, based on the two-sided Laplace integral. New York: Chelsea, 1987.

    MATH  Google Scholar 

  33. A.J. Weir, Lebesgue Integration & Measure. Cambridge, England: C.U. Press, 1973.

    MATH  Google Scholar 

  34. A.H. Zemanian, Distribution Theory and Transform Analysis. New York: Dover, 1987.

    MATH  Google Scholar 

  35. A.H. Zemanian, Generalized Integral Transformations. New York: Dover, 1987. The 1968 edition is reviewed by L. Weiss, JFI, vol. 288, no. 4, pp. 329–330, 1969, and by J. Korevaar, SIAM R., vol. 15, no. 1, pp. 232–234, 1973.

    Google Scholar 

[B] General References on System Theory

  1. B.D.O. Anderson, “A system theory criterion for positive real matrices,” SIAM J. Control, vol. 5, no. 2, pp. 171–182, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  2. B.D.O. Anderson, M.A. Arbib, and E. Manes, “Foundations of system theory: Multidecomposable systems,” JFI, vol. 301, no. 6, pp. 497–508, 1976.

    MathSciNet  MATH  Google Scholar 

  3. Y.N. Andreev, “Algebraic methods of state space in linear object control theory (survey of foreign literature),” ARC, vol. 38, no. 3, pp. 305–342, March 1977.

    MATH  Google Scholar 

  4. D.J. Bell, Mathematics of Linear and Nonlinear Systems, for engineers and applied scientists. New York: Oxford University Press, 1990.

    Google Scholar 

  5. R.W. Brockett, “Poles, zeros, and feedback: State space interpretation,” IEEE-TAC, vol. AC-10, pp. 129–135, April 1965.

    Google Scholar 

  6. R.W. Brockett, Finite-Dimensional Linear Systems. New York: Wiley, 1970. Reviewed by M. Vidyasagar, IEEE-TSMC, vol. SMC-1, pp. 96–97, 1971, and in JFI, vol. 291, no. 1, pp. 8384, 1971, and by D. Tabak, JFI, vol. 292, no. 5, p. 388, 1972, and by M. Sain, IEEE-TAC, vol. AC-17, no. 5, pp. 753–754, 1972.

    Google Scholar 

  7. C.-T. Chen, Linear System Theory and Design. New York: Holt, Rinehart and Winston, 1984. The 1970 edition is reviewed by A.S. Morse, IEEE-TAC, vol. AC-17, no. 5, pp. 748–749, 1972, and the 1984 edition is reviewed by S. Barnett, Automatica, vol. 22, no. 3, pp. 385386, 1986.

    Google Scholar 

  8. C.-T. Chen and C.A. Desoer, “Controllability and observability of composite systems,” IEEE-TAC, vol. AC-12, no. 4, pp. 402–409, Aug. 1967.

    Google Scholar 

  9. F.G. Csaki, “Some notes on the inversion of confluent Vandermonde matrices,” IEEE-TAC, vol. AC-20, no. 1, pp. 154–157, Feb. 1975.

    MathSciNet  Google Scholar 

  10. E.G. Gilbert, “Controllability and observability in multivariable control systems,” SIAM J. Contr., vol. 2, no. 1, pg. 128–151, 1963.

    Google Scholar 

  11. I.C. Goknar, “Obtaining the inverse of the generalized Vandermonde matrix of the most general type,” IEEE-TAC, vol. AC-18, no. 5, pp. 530–532, Oct. 1973.

    MathSciNet  Google Scholar 

  12. D.G. Luenberger, “Observers for multivariable systems,” IEEE-TAC, vol. AC-11, no. 2, pp. 190–197, April 1966.

    Google Scholar 

  13. T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980. Reviewed by S.R. Liberty, IEEE-TAC, vol. AC-26, no. 3, pp. 804–805, 1981, and by J.C. Willems, Automatica, vol. 18, no. 4, pp. 497–499, 1982, and by S.H. Zak, SIAM R., vol. 26, no. 1, pp. 132–135, 1984.

    Google Scholar 

  14. W.R. Perkins and J.B. Cruz, Jr., Engineering of Dynamic Systems. New York: Wiley, 1969. Reviewed by M. Athans, IEEE-TAC, vol. AC-17, no. 1, pp. 185–186, 1976.

    Google Scholar 

  15. W.A. Porter, Modern Foundations of Systems Engineering. New York Macmillan, 1966. Reviewed by B.D.O. Anderson, IEEE-TAC, vol AC-12, no. 5, pp. 636–637, 1967.

    Google Scholar 

  16. H.H. Rosenbrock, State-Space and Multivariable Theory. New York: Wiley, 1970. Reviewed by W. Wolovich, IEEE-TAC, vol. AC-17, no. 4, pp. 583–584, 1972.

    Google Scholar 

  17. J.C. Willems and S.K. Mitter, “Controllability observability, pole allocation and state reconstruction,” IEEE-TAC, vol AC-16, no. 6, pp. 582–595, Dec. 1971.

    Google Scholar 

  18. W.M. Wonham and A.S. Morse, “Decoupling and pole assignment in linear multivariable systems: A geometric approach,” SIAM J. Contr., vol 8, no. 1, pp. 1–18, Feb. 1970.

    Article  MathSciNet  MATH  Google Scholar 

  19. D.C. Youla, “On the factorization of rational matrices,” IRE-TIT, vol. IT-7, pp. 172–189, July 1961.

    Google Scholar 

  20. L.A. Zadeh and C.A. Desoer, Linear System Theory. New York: McGraw-Hill, 1963.

    MATH  Google Scholar 

[C] Representative References on: Advanced System Theory, Optimal Control Systems, Calculus of Variations, and Dynamic Programming

  1. F. Albrecht, Topics in Control Theory. Berlin: Springer — Verlag, 1968.

    Book  MATH  Google Scholar 

  2. B.D.O. Anderson and J.B. Moore, Linear Optimal Control. Englewood Cliffs, NJ: Prentice-Hall, 1971.

    MATH  Google Scholar 

  3. B.D.O. Anderson and J.B. Moore, Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979. Reviewed by J.M. Mendel, IEEE-TAC, vol. AC-25, no. 3, pp. 615–616, 1980, and by M. Eslami, IEEE-TSMC, vol. SMC-12, no. 2, pp. 235–236, 1982.

    Google Scholar 

  4. M. Aoki, Optimization of Stochastic Systems. New York Academic Press 1967.

    Google Scholar 

  5. M. Athans and P. Falb, Optimal Control: an introduction to the theory and its applications. New York: McGraw-Hill, 1966. Reviewed by S.J. Kahne and E.B. Lee, IEEE-TAC, vol. AC-12, no. 3, pp. 345–347, 1967, and by E. Kreindler, JFI, vol 283, no. 4, pp. 350–351, 1967.

    Google Scholar 

  6. D.S. Bayard and M. Eslami, Stochastic Adaptive Control for General Dynamic Systems. New York Marcel Dekker, 1995, to appear.

    Google Scholar 

  7. G.A. Bliss, Lectures on the Calculus of Variations. Chicago: The University of Chicago Press, eighth impression, 1968.

    Google Scholar 

  8. The 1969 edition is reviewed by Y.Z. Tsypkin, Automatica, vol. 6, pp. 825–826, 1970, and by J.S. Meditch, IEEE-TAG, vol AC-17, no. 1, pp. 186–188, 1972, and by P.-T. Hsu, JFl, vol. 293, no. 1, pp. 69–70, 1972.

    Google Scholar 

  9. R.S. Bucy and P.D. Joseph, Filtering for Stochastic Processes with Application to Guidance. New York: Interscience, 1968. (Reprint, Chelsea, 1987.)

    Google Scholar 

  10. S.S.L. Chang, Synthesis of Optimum Control Systems. New York McGraw-Hill, 1961.

    Google Scholar 

  11. F.L. Chemousko and A.A. Lyubushin, “Method of successive approximations for solution of optimal control problems,” JOCAM, vol. 3, pp. 101–114, 1982.

    Google Scholar 

  12. S.E. Dreyfus, Dynamic Programming and the Calculus of Variations. New York: Academic Press, 1965.

    MATH  Google Scholar 

  13. S.E. Dreyfus and A.M. Law, The Art and Theory of Dynamic Programming. New York: Academic Press, 1977.

    MATH  Google Scholar 

  14. L.E. Eisgoc, Calculus of Variations. New York: Pergamon Press, Ltd., 1961.

    Google Scholar 

  15. A.A. Feldbaum, Optimal Control Systems. [Translated from Russian by A. Kraiman.] New York: Academic Press, 1965. Reviewed by J.C. Hsu, IEEE-TAC, vol. AC-13, no. 2, p. 224, 1968.

    Google Scholar 

  16. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. New York: Springer — Verlag, 1975. Reviewed by A.N. Michel, IEEE-TAC, vol. AC-22, no. 6, pp. 997998, 1977.

    Google Scholar 

  17. R.V. Gamkrelidze, Principle of Optimal Control Theory. [Translated from Russian by K. Makowski. Edited by L.D. Berkovitz.] New York: Plenum Press, 1978.

    Google Scholar 

  18. A. Gelb, Applied Optimal Estimation. Cambridge, MA: MIT Press, 1974.

    Google Scholar 

  19. I.M. Gelfand and S.V. Fomin, Calculus of Variations. Englewood Cliffs, NJ: Prentice-Hall, 1963.

    Google Scholar 

  20. J.C. Gille, Mi. Pelegrin, and P. Decauline, Theorie et Technique des Asservissements. Paris: Dunod, 1956.

    Google Scholar 

  21. B.S. Goh, A Theory of Second Variation in Optimal Control. Berkeley, CA: The University of Calif., Division of Applied Mechanics, 1970.

    Google Scholar 

  22. D. Graupe, Identification of Systems. New York: Van Nostrand Reinhold, 1972. (Second rev. edition, R.E. Krieger, 1976 ).

    Google Scholar 

  23. H. Hermes and J.P. LaSalle, Functional Analysis and Time Optimal Control. New York: Academic Press 1969. Reviewed by D, Bushaw, IEEE-TAC, vol. AC-17, no. 1, pp. 189–190, 1972.

    Google Scholar 

  24. R. Howard, Dynamic Programming and Markov Processes. New York Wiley, 1960.

    Google Scholar 

  25. R.E. Kalman, P.L. Falb, and M. Arbib, Topics in Mathematical System Theory. New York McGraw-Hill, 1969. Reviewed by W. Kaplan, SIAM R., vol. 12, no. 1, pp. 157–158, 1970, and by J.C. Willems, J.L. Massey, and W.M. Wonham, IEEE-TAC, vol. AC-17, no. 1, pp. 181–183, 1972.

    Google Scholar 

  26. D.E. Kirk, Optimal Control Theory, an introduction. Englewood Cliffs, NJ: Prentice-Hall, 1970. Reviewed by W.S. Levine, IEEE-TAC, vol. AC-17, no. 3, p. 423, 1972.

    Google Scholar 

  27. B.C. Kuo, Discrete Data Control Systems. Englewood Cliffs, NJ: Prentice-Hall, 1970. Reviewed by J.B. Lewis, IEEE-TAC, vol. AC-17, no. 3, pp. 418–419, 1972.

    Google Scholar 

  28. H. Kwakemaak and R. Sivan, Linear Optimal Control Systems. New York Wiley, 1972. Reviewed by A.E. Pearson, IEEE-TAC, vol. AC-19, no. 5, pp. 631–632, 1974.

    Google Scholar 

  29. H. Kwakemaak and R. Sivan, Signals and Systems. Englewood Cliffs, NJ: Prentice-Hall, 1990.

    Google Scholar 

  30. E.B. Lee and L. Markus, Foundations of Optimal Control Theory. New York: Wiley, 1967. (Reprint, R.E. Kreiger, 1986). Reviewed by H. Hermes, IEEE-TAC, vol. AC-13, no. 2, pp. 222–223, 1968, and by R. Datko, SIAM R., vol. 11, no. 1, pp. 93–95, 1969.

    Google Scholar 

  31. D.G. Luenberger, Optimization by Vector Space Methods. New York: Wiley, 1969. Reviewed by R.W. Brockett and J.C. Willems, IEEE-TAC, vol. AC-15, no. 1, pp. 160–161, 1970, and by J..E. Falk, SIAM R., vol. 12, no. 2, pp. 315–316, 1970.

    Google Scholar 

  32. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The Mathematical Theory of Optimal Process. [Translated from Russian by K.N. Trirogoff. Edited by L.W. Neustadt.] New York: Interscience Publishers, 1962.

    Google Scholar 

  33. D.L. Russell, Topics in Ordinary Differential Equations. The University of Wisconsin-Madison, Department of Mathematics, Unpublished lecture notes, Spring 1975.

    Google Scholar 

  34. Mathematics of Finite Dimensional Control System, theory and design. New York: Marcel Dekker, 1979. Reviewed by H. Sagan, SIAM R.,vol. 23, no. 1, pp. 115–116, 1981, and by M. Eslami, IEEE-TSMC vol. SMC-14, no. 1, pp. 166–168, 1984.

    Google Scholar 

  35. A.P. Sage and C.C. White, III, Optimum Systems Control. Englewood Cliffs, NJ: Prentice-Hall (2nd edition), 1977. Reviewed by M. Eslami, JFI, vol. 305, no. 1, pp. 57–58, Jan. 1978, and by G.M. Siouris, IEEE-TSMC, vol. SMC-9, no. 2, pp. 102–103, 1979.

    Google Scholar 

  36. N.R. Sandell and M. Athans, Modern Control Theory (Computer Manual). Center for Advanced Engineering Study: MIT, 1974.

    Google Scholar 

  37. F.C. Schweppe, Uncertain Dynamic Systems. Englewood Cliffs, NJ: Prentice-Hall, 1973.

    Google Scholar 

  38. H.L. Van Trees, Synthesis of Optimum Nonlinear Control Systems. Cambridge, MA: MIT Press, 1962.

    Google Scholar 

  39. M. Vidyasagar, Control System Synthesis: A Factorization Approach. Cambridge, MA: MIT Press, 1985. Reviewed by B.F. Wyman, IEEE-TAC, vol. AC-31, no. 11, p. 1085, 1986, and by F.M. Calier, Automatica, vol. 22, no. 4, pp. 500–501, 1986.

    Google Scholar 

  40. J.C. Willems, The Analysis of Feedback Systems. Cambridge, MA: MIT Press, 1971. Reviewed by R. Sacks, IEEE-TAC, vol. AC-17, no. 5, pp. 745–746, 1972.

    Google Scholar 

  41. The 1974 edition is reviewed by J.B. Pearson, IEEE-TAC, vol. AC-22, no. 6, pp. 1000–1001, 1977.

    Google Scholar 

  42. V. Zeidan, “First and second order sufficient conditions for optimal control and the calculus of variations,” AMO, vol. 11, pg. 209–226, 1984.

    MathSciNet  MATH  Google Scholar 

[D] Certain Papers on Optimal Deterministic Control Systems

  1. M. Athans, “The matrix minimum principle,” IC, vol. 11, pp. 592–606, 1968.

    MathSciNet  Google Scholar 

  2. J. Cullum, “Discrete approximations to continuous optimal control problems,” SIAM J. Contr., vol. 7, no. 1, pp. 32–49, Feb. 1969.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.W. Daniel, “The Ritz-Galerkin method for abstract optimal control problems,” SIAM J. Contr., vol. 11, no. 1, pp. 53–63, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  4. R.E. Kalman, “Contributions to the theory of optimal control,” BSMM, vol. 5, pp. 102–119, 1960.

    MathSciNet  Google Scholar 

  5. R.E. Kalman, “When is a linear control system optimal?” ASME-JBE, Series D, pp. 51–60, 1964.

    Google Scholar 

  6. D.L. Kleinman and M. Athans, “The design of suboptimal linear time-varying systems,” IEEE-TAC, vol. AC-13, pp. 150–159, April 1968.

    Google Scholar 

  7. W.S. Levine, T.L. Johnson, and M. Athans, “Optimal limited state variable feedback controllers for linear systems,” IEEE-TAC, vol. AC-16, no. 6, pp. 785–792, 1971.

    Google Scholar 

  8. D.L. Lukes, “Optimal regulation of nonlinear dynamical systems,” SIAM J. Contr., vol. 7, no. 1, pp. 75–100, Feb. 1969.

    Article  MathSciNet  MATH  Google Scholar 

  9. D.L. Lukes, “Equilibrium feedback control in linear games with quadratic costs,” SIAM J. Contr., vol. 9, no. 2, pp. 234–252, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Markus and E.B. Lee, “On the existence of optimal controls,” ASME-JBE, pp. 13–22, March 1962.

    Google Scholar 

  11. C. Marshal, “Second-order tests in optimization theories,” (Survey paper) JOTA, vol. 15, no. 6, pp. 633–666, 1975.

    Article  Google Scholar 

  12. E.J. Messer li and E. Polak, “On second-order necessary conditions of optimality,” SIAM J. Contr., vol. 7, no. 2, pp. 272–291, May 1969.

    Article  MathSciNet  MATH  Google Scholar 

  13. L.I. Rozonoer, “L.S. Pontryagin maximum principle in the theory of optimum systems. I,” ARC, vol. 20, no. 10, pp. 1288–1302, 1959.

    MathSciNet  Google Scholar 

  14. L.I. Rozonoer, “L.S. Pontryagin’s maximum principle in optimal system theory — II,” ARC, vol. 20, no. 11, pp. 1405–1421, 1959.

    MathSciNet  Google Scholar 

  15. L.I. Rozonoer, “The maximum principle of L.S. Pontryagin in optimal-system theory. Part III,” ARC,vol. 20, no. 12, pp. 1517–1532, 1959.3

    Google Scholar 

  16. K. Spingarn, “Some numerical aspects of optimal control,” JFI, vol. 289, pp. 351–359, May 1970.

    MATH  Google Scholar 

  17. K. Spingarn, “A comparison of numerical methods for solving optimal control problems,” IEEE-TAES, vol. AES-7, no. 1, pp. 73–78, Jan. 1971.

    MathSciNet  Google Scholar 

  18. LN. Volgin, “Diophantine polynomial calculus and its application to the solution of mathematical problems in control theory (a survey),” SJAIS, vol. 20, no. 1, pp. 40–49, 1987.

    MATH  Google Scholar 

  19. W.R. Wakeland, “A study of weighting factors of the quadratic performance index,” JFI, vol. 287, no. 2, pp. 101–113, Feb. 1969.

    MATH  Google Scholar 

[E] Representative References on the Theory of Errors Perturbation, and Approximation Theory

  1. N.I. Achieser, Theory of Approximation. [Translated from Russian by C.J. Hyman.] New York: Dover, 1992.

    Google Scholar 

  2. W.K. Bachmann, Theorie des Erreurs et Compensation des Triangulations Aeriennes. Lausanne: Impr. La Concorde, 1946.

    Google Scholar 

  3. Y. Beers, Introduction to the Theory of Error. Cambridge, MA: Addison-Wesley, 1953.

    Google Scholar 

  4. A. Bjerhammar, Theory of Errors and Generalized Matrix Inverses. Amsterdam: Elsevier Scientific Pub. Co., 1973.

    MATH  Google Scholar 

  5. E.W. Cheney, Introduction to Approximation Theory. New York: Chelsea, 1982. The 1969 edition is reviewed by D. Chazan, SIAM R., vol. 10, no. 3, pp. 393–394, 1968.

    Google Scholar 

  6. A.A. Clifford, Multivariate Error Analysis. New York: Halsted Press (A Division of John Wiley and Sons ), 1973.

    Google Scholar 

  7. G. Cullmann, Codes Detecteurs et Correcteurs d’ Erreurs. Paris: Dunod, 1967.

    MATH  Google Scholar 

  8. P.J. Davis, Interpolation & Approximation. New York: Dover, 1975.

    MATH  Google Scholar 

  9. V.F. Dem’yanov and V.N. Malozemov, Introduction to MINIMAX. [Translated from Russian by D. Louvish.] New York: Dover, 1990.

    MATH  Google Scholar 

  10. U. Grenander and G. Szego, Toeplitz Forms and Their Applications. New York: Chelsea, 1984.

    MATH  Google Scholar 

  11. H. Levy and F. Lessman, Finite Difference Equations. New York: Dover, 1992.

    Google Scholar 

  12. G.G. Lorentz, Approximation of Functions. New York: Chelsea, 1986.

    MATH  Google Scholar 

  13. A.H, Nayfeh, Perturbation Methods. New York: Wiley, 1973. Reviewed by J.D. Cole, SIAM R., vol. 18, no. 1, pp. 139–140, 1976, and by V. Singh, IEEE-TSMC, vol. SMC-8, no. 5, pp. 417–418, 1978, and by P.D. Usher, JFI, vol. 298, no. 3, p. 247, 1974, and by M.L. Rasmussen, ibid., vol. 307, no. 2, p. 151, 1979.

    Google Scholar 

  14. J.L. Walsh, Interpolation and Approximation, by rational function in the complex domain. Providence, RI: American Mathematical Society, Colloquium, vol. 20, 1935. (Boston: Spaulding-Moss Comp., third edition, 1960.)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eslami, M. (1994). The Principal Aspects of Sensitivity Theory. In: Theory of Sensitivity in Dynamic Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01632-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01632-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01634-3

  • Online ISBN: 978-3-662-01632-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics