Yearly Yield of Solar CRS-Process Heat and Temperature of Reaction

  • P. Koepke
  • H. Quenzel
  • R. Sizmann


It is by thermodynamics of advantage to utilize process heat of highest possible and achievable temperature. In conventional thermal electricity power plants the exploited upper temperature is limited by materials properties to about 1000 K. It is believed that e.g., with MHD and thermochemical reactions higher proces’s temperatures can be sustained or handled in new procedures of energy transfer.


Heat Transfer Coefficient Aerosol Particle Optical Thickness Process Heat Direct Solar Radiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. The Astronomical Almanac for the Year 1977. Washington: U.S. Government Printing Office London: Her Majesty’s Stationery OfficeGoogle Scholar
  2. Stine, W.B. and R.W. Harrigan (1985) Solar Energy Fundamentals and Design. John Wiley and Sons, New YorkGoogle Scholar
  3. Schiel, W. (1983) HERMES Measurements. SSPS Technical Report No. 4/83, Paper 2. 6Google Scholar
  4. Fricker, H.W. (1983). A proposal for a novel type of solar gas receiver. In: International Seminar on Solar Thermal Heat Production and Solar Fuels and Cheminals. DFVLR–Stuttgart, October 13–14, 1983. Paper No. 11Google Scholar
  5. Müller, W.D. (1986) LURGI, Verfahrenstechnik Ingenieurtechnik Anlagenbau, Frankfurt, D-6000. Private CommunicationGoogle Scholar
  6. BAPMoN (1974 till 1977 ), Global Atmospheric Background Monitoring for selected environmental parameters. Prepared by NESDIS, Federal Bdg, Asheville, NC. 28801 USAGoogle Scholar
  7. Bertoni, E.A. (1977), Clear and Cloud Free Lines of Sight from Aircraft. AFGL-TR-77–0141, Hanscom AFB, Mass. 01731Google Scholar
  8. Bird,R. and R.L.Hulstrom (1981), Review, evaluation and improvement of direct irradiance models, Trans. ASME. J.Sol.Energy Eng. 103, 182–192Google Scholar
  9. Fröhlich,K. (1985), Jahresbericht 1984 des Physikalisch-Meteorologischen Observatoriums und Weltstrahlungszentrum, CH-7260 Davos; Publikat. Nr. 613Google Scholar
  10. Gebhart,R., R.Bojkov and J.London (1970), Stratospheric Ozone,. Beitr. Phys Atm., 43, 209–227Google Scholar
  11. Grasse, W. (1985), Small Power Systems; Results of test and operation. SSPS SR7. DFVLR, Köln Porz, pp. 155Google Scholar
  12. Heymsfield,A.J. and R.G.Knollenberg (1972), Properties of Cirrus Generating Cells. J.Atm.Sci. 29, 1358–1366CrossRefGoogle Scholar
  13. Igbal,M. (1983), Solar Radiation, Academic Press, Toronto, pp. 390Google Scholar
  14. Köppen,W. and R.Geiger (1936), Handbuch der Klimatologie, Borntrager Verlag, BerlinGoogle Scholar
  15. Lund,I.A. (1965), Estimating the probability of clear lines of sight from sunshine and cloud cover observations. J.Appl.Meteorology, 4, 714–722CrossRefGoogle Scholar
  16. Lund,I.A., D.D.Grantham and C.B.Elam (1978), Atlas of Cloud Free Line of Sight Probabilities, Part 4: Europe, AFGL-TR-78–0276, Hanscom AFB, Mass. 01731Google Scholar
  17. Malberg,H. (1977). Ein Beitrag zur Bewölkungsklimatologie Europas und des Atlantiks anhand von Satellitenaufnahmen. Meteorologische Abhandlungen, Inst. f. Meteorologie der FU Berlin, Neue Folge, Serie A, Bd. l, Heft 1Google Scholar
  18. Möller,F. (1970) in: Meteorologisches Taschenbuch, F.Baur ( Ed. ), Akademische Verlagsgesellschaft LeipzigGoogle Scholar
  19. Scheffler,H. und H.Elsässer (1974), Physik der Sterne und der Sonne. Wissenschaftsverlag Mannheim, pp. 535Google Scholar
  20. Thomalla,E., P.Koepke, H.Müller und H.Quenzel (1983), Circumsolar radiation calculated for various atmospheric conditions. Solar Energy 30, 575–587Google Scholar
  21. Tulier,S.E. (1968), World distribution of mean monthly and annual precipitable water. Month. Weath. Rev. 96, 785–797CrossRefGoogle Scholar
  22. Waldmeier,M. (1941), Ergebnisse und Probleme der Sonnenforschung. Akademische Verlagsgesellschaft Leipzig, pp. 264Google Scholar
  23. Wendling,P. (1980), On the albedo and infrared emissivity of cirrus clouds. Int.Rad.Symp. 1980, Mt.Collins, CO, USAGoogle Scholar
  24. Woodbury,G.E. and M-P.McGormick (1986), Zonal and geographical distributions of cirrus clouds determined from SAGE data. J.Geoph. Res. 91, noc C2, 2775–2785Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1987

Authors and Affiliations

  • P. Koepke
    • 1
  • H. Quenzel
    • 1
  • R. Sizmann
    • 1
  1. 1.Universität MünchenGermany

Personalised recommendations