Synthese, Speicherung und Freisetzung des adrenergischen Neurotransmitters

  • U. S. von Euler
Conference paper
Part of the Verhandlungen der Gesellschaft Deutscher Naturforscher und Ärzte book series (NATURFORSCHER, volume 106)


Die Synthese des adrenergischen Neurotransmitters sowie verschiedene Faktoren, die die Synthese anfachen oder hemmen, werden erörtert. Die Speicherung in Transmittorgranula und einige deren Eigenschaften bezüglich Aufnahme und Freisetzung werden diskutiert, insbesondere die Bedeutung verschiedener körpereigener Stoffe und Arzneimittel für diese Prozesse


The synthesis of the adrenergic neurotransmitter and the different factors which may enhance or inhibit its synthesis are described. The author discusses the storage in transmitter granules and some of their properties as regards uptake and release, and in particular the action of different naturally occarring substances and drugs on these functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert, K., Sandri, C.: Identification of the active synaptic region by means of histochemical and freeze-etching techniques. In: Excitatory Synaptic Mechanisms, eds. P. Andersen and J. K. S. Jansen, p. 27–41. Oslo: Universitets-forlaget 1970.Google Scholar
  2. Andén, N.-E., Corrodi, H., Ettles, M., Gustafsson, E., Pers-son, H.: Selective uptake of some catecholamines by the isolated heart and its inhibition by cocaine and phenoxy-benzamine. Acta pharmacol. (Kbh) 21, 247–259 (1964).CrossRefGoogle Scholar
  3. Axelrod, J.: Purification and properties of phenylethanol-amine-N-methyl transferase. J. biol. Chem. 237, 1657–1660 (1962).PubMedGoogle Scholar
  4. Barger, G.: Some applications of organic chemistry to biology and medicine. Baker Lecture, vol. 5. New York: McGrow-Hill 1930.Google Scholar
  5. Bhattacharya, I. C.: Uptake of noradrenaline in the isolated perfused rat heart after depletion with decaborane. Acta physiol. scand. 73, 128–138 (1968).PubMedCrossRefGoogle Scholar
  6. Blaschko, H.: The specific action of l-dopa decarboxylase. J. Physiol. (Lond.) 96, 50P—51P (1939).Google Scholar
  7. Carlsson, A., Waldeck, B.: β-Hydroxylation of tyramine in vivo. Acta pharmacol. (Kbh.) 20, 371–375 (1963).CrossRefGoogle Scholar
  8. Carlsson, A., Corrodi, H., Waldeck, B.: α-Substituierte Dopacetamide als Hemmer der Catechol-O-methyl-transferase und der en-zymatischen Hydroxylierung aromatischer Aminosäuren. In den Catecholamin-Metabolismus eingreifende Substanzen. 2. Mitteilung. Helv. chim. Acta 46, 2271–2285 (1963).CrossRefGoogle Scholar
  9. Clark, W. G.: Studies on inhibition of 1-dopa decarboxylase in vitro and in vivo. Pharmacol. Rev. 11, 330–349 (1959).PubMedGoogle Scholar
  10. Corrodi, H., Malmfors, T.: The effect of nerve activity on the depletion of the adrenergic transmitter by inhibitors of noradrenaline synthesis. Acta physiol. scand. 67, 352–357 (1966).PubMedCrossRefGoogle Scholar
  11. Creveling, C. R., Levitt, M., Udenfriend, S.: An alternative route for biosynthesis of norepinephrine. Life Sei. 1, 523–526 (1962).CrossRefGoogle Scholar
  12. Erspamer, V.: Azione adrenalinosimile degli estratti di ghian-dola salivare posteriore di octopus vulgaris irradiati con luce ultravioletta. Arch. Sei. biol. (Bologna) 26, 443–469 (1940).Google Scholar
  13. Euler, U. S.v.: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline. Acta physiol. scand. 12, 73–97 (1946).CrossRefGoogle Scholar
  14. Euler, U. S.v.: Noradrenaline (arterenol), adrenal medullary hormone and chemical transmitter of adrenergic nerves. Ergebn. Physiol. 46, 261–307 (1950).CrossRefGoogle Scholar
  15. Euler, U. S.v.: The nature of adrenergic nerve mediators. Pharmacol. Rev. 3, 247–277 (1951).Google Scholar
  16. Euler, U. S.v.: Presence of catechol amines in visceral organs of fish and invertebrates. Acta physiol. scand. 28, 297–305 (1953).CrossRefGoogle Scholar
  17. Euler, U. S.v.: Hillarp, N.-A.: Evidence for the presence of noradrenaline in submicroscopic structures of adrenergic axons. Nature (Lond.) 177, 44–45 (1956).CrossRefGoogle Scholar
  18. Euler, U. S.v.: Lishajko F.: Reuptake and net uptake of noradrenaline in adrenergic nerve granules with a note on the affinity for 1- and d-isomers. Acta physiol. scand. 71, 151–162 (1967).CrossRefGoogle Scholar
  19. Euler, U. S.v.: Effects of some metabolic co-factors and inhibitors on transmitter release and uptake in isolated adrenergic nerve granules. Acta physiol. scand. 77, 298–307 (1969).CrossRefGoogle Scholar
  20. Euler, U. S.v.: Stjärne, L.: Catecholamines and adenosine triphosphate in isolated adrenergic nerve granules. Acta physiol. scand. 59, 495–496 (1963).CrossRefGoogle Scholar
  21. Gessa, G. L., Costa, E., Kuntzman, R., Brodie, B. B.: On the mechanism of norepinephrine release by α-methyl-meta-tyrosine. Life Sei. 1, 353–360 (1962).CrossRefGoogle Scholar
  22. Goldstein, M., Lauber, E., McKereghan, M. R.: The inhibition of dopamine-α-hydroxylase by tropolone and other chelating agents. Biochem. Pharmacol. 13, 1103–1106 (1964).PubMedCrossRefGoogle Scholar
  23. Goldstein, M., Weiss, Z.: Inhibition of tyrosine hydroxylase by 3-iodo-1-tyrosine. Life Sei. 4, 261–264 (1965).CrossRefGoogle Scholar
  24. Goodall, McC, Kirshner, N.: Biosynthesis of epinephrine and norepinephrine by sympathetic nerves and ganglia. Circulation 17, 366–371 (1958).PubMedCrossRefGoogle Scholar
  25. Gurin, S., Delluva, A. M.: The biological synthesis of radioactive adrenaline from phenylalanine. J. biol. Chem. 170, 545–550 (1947).Google Scholar
  26. Hedqvist, P.: Studies on the effect of prostaglandins E1 and E2 on the sympathetic neuromuscular transmission in some animal tissues. Acta physiol. scand. 79, Suppl. 345 (1970).CrossRefGoogle Scholar
  27. Helle, K.: Immunological properties of chromogranin. Bayer Symposium II. Eds. H. J. Schümann und G. Kroneberg. Berlin-Heidelberg-New York: Springer 1970. In press.Google Scholar
  28. Hörtnagl, H., Hörtnagl, Heide, Winkler, H.: Bovine splenic nerve: Characterization of noradrenaline-containing vesicles and other cell organelles by density gradient centrifugation. J. Physiol. (Lond.) 205, 103–114 (1969).PubMedGoogle Scholar
  29. Holtz, P., Credner, K., Kroneberg, G.: Über das sympathico-mimetische pressorische Prinzip des Harns („Urosympathin“). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 204, 228–243 (1944/1947).CrossRefGoogle Scholar
  30. Holtz, P., Heise, R., Lüdtke, K.: Fermentativer Abbau von 1-Dioxy-phenylalanin (Dopa) durch Niere. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 191, 87–118 (1938).CrossRefGoogle Scholar
  31. Katz, B.: The release of neural transmitter substances. The Sherrington Lectures X. Liverpool: Univ. Press 1969.Google Scholar
  32. Levin, E. Y., Kaufman, B.: Studies on the enzyme catalyzing the conversion of 3,4-dihydrotyphenylethylamine to norepinephrine. J. biol. Chem. 236, 2043–2049 (1961).PubMedGoogle Scholar
  33. Merritt, J. H., Schultz, E. J.: The effect of decaborane on the biosynthesis and metabolism of norepinephrine in the rat brain. Life Sei. 5, 27–32 (1966).CrossRefGoogle Scholar
  34. Merritt, J. H., Schulz, E. J, Wykes, A. A.: Effect of decaborane on norepinephrine content of rat brain. Biochem. Pharmacol. 13, 1364–1365 (1964).PubMedCrossRefGoogle Scholar
  35. Montanari, R., Costa, E., Beaven, M. A., Brodie, B. B.: Turnover rates of norepinephrine in hearts of intact mice, rats, and guinea pigs using tritiated norepinephrine. Life Sei. 2, 232–240 (1963).CrossRefGoogle Scholar
  36. Musacchio, J., Kopin, I. J., Snyder, S.: Effects of disulfiram on tissue norepinephrine content and subcellular distribution of dopamine, tyramine, and their β-hydroxylated meta-bolites. Life Sei. 3, 769–775 (1964).CrossRefGoogle Scholar
  37. Musacchio, J., Weise, V. K.: Subcellular distribution of some sympathomimetic amines and their β-hydroxylated derivatives in the rat heart. J. Pharmacol. exp. Ther. 148, 22–28 (1965).PubMedGoogle Scholar
  38. Muscholl, E., Maitre, L.: Release by sympathetic stimulation of a-methylnoradrenaline stored in the heart after administration of a-methyldopa. Experientia (Basel) 19, 658–659 (1963).CrossRefGoogle Scholar
  39. Oates, J. A., Gillespie, L., Udenfriend, S., Sjoerdsma, A.: Decarboxylase inhibition and blood pressure reduction by α-methyl- 3,4 — dihydroxy — dl — phenylalanine. Science 131, 1890–1891 (1960).PubMedCrossRefGoogle Scholar
  40. Roth, R. H., Stjärne, L., Euler, U. S. v: Factors influencing the rate of norepinephrine biosynthesis in nerve tissue. J. Pharmacol. exp. Ther. 158, 373–377 (1967).PubMedGoogle Scholar
  41. Schümann, H. J., Philippu, A.: Untersuchungen zum Mechanismus der Freisetzung von Brenzcatechinaminen durch Tyramin. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 241, 273–280 (1961).CrossRefGoogle Scholar
  42. Shahab, L., Lishajko, F., Euler, U. S. v.: Differentiated storage mechanisms for noradrenaline and dopamine in rabbit heart. Neuropharmacol. (1971).Google Scholar
  43. Sourkes, T. L.: Inhibition of dihydroxyphenylalanine decarboxylase by derivative of phenylalanine. Arch. Biochem. 51, 444–456 (1954).PubMedCrossRefGoogle Scholar
  44. Spector, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, and inhibitor of tyrosine hydroxylase. J. Pharmacol. exp. Ther. 147, 86–95 (1965).PubMedGoogle Scholar
  45. Stjärne, L., Lishajko, F., Roth, R. H.: Regulation of noradrenaline biosynthesis in nerve tissue. Nature (Lond.) 215, 770–772 (1967).CrossRefGoogle Scholar
  46. Thoenen, H., Mueller, R. A., Axelrod, J.: Transsynaptic induction of adrenal tyrosine hydroxylase. J. Pharmacol. exp. Ther. 169, 249–254 (1969).PubMedGoogle Scholar
  47. Trendelenburg, U.: The supersensitivity caused by cocaine. J. Pharmacol. exp. Ther. 125, 55–65 (1959).PubMedGoogle Scholar
  48. Udenfriend, S.: Physiological regulation of noradrenaline biosynthesis. Ciba Foundation Study Group No 33 “Adrenergic Neurotransmission”, p. 3–11. London: J. & A. Churchill Ltd. 1968.Google Scholar
  49. Udenfriend, S., Zaltzman-Nirenberg, P., Nagatsu, T.: Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem. Pharmacol. 14, 837–845 (1965).PubMedCrossRefGoogle Scholar
  50. Weissbach, H., Lovenberg, W., Udenfriend, S.: Enzymatic decarboxylation of α-methyl amino acids. Biochem. biophys. Res. Commum. 3, 225–227 (1960).Google Scholar
  51. Wolfe, D.E., Potter, L. T., Richardson, K. C., Axelrod, J.: Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138, 440–442 (1962).PubMedCrossRefGoogle Scholar
  52. Wykes, A. A., Landez, J. H.: Modification of the tissue norepinephrine and serotonin depleting action and toxic effects of decaborane-14 by pyridoxine hydrochloride and pyridoxal phosphate. Fed. Proc. 26, No 2 (1967).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • U. S. von Euler
    • 1
  1. 1.Karolinska InstitutetFysiologiska Institutionen IStockholm 60Schweden

Personalised recommendations