Skip to main content

Das Bändermodell

  • Chapter
Elektronische Halbleiter
  • 71 Accesses

Zusammenfassung

Das Bändermodell entsteht auf Grund von näherungsverfahren, die eine Übertragung der von Hund und von Mulliken für gewöhnliche Moleküle entwickelten Methode auf das Riesenmolekül des Kristalls darstellen. Streng genommen handelt es sich bei einem Kristall, bestehend aus N Kernen mit je m Elektronen um ein (N + N • m)-Körperproblem. Sieht man zunächst einmal von den Bewegungsmöglichkeiten der N Kerne ab, so reduziert sich die Aufgabe auf ein N • m-Körperproblem, dessen Lösung nun wieder aus Kombinationen der verschiedenen Lösungen eines Einelektronenproblems aufgebaut wird. Der gemeinsame charakteristische Zug des Verfahrens von Hund und von Mulliken einerseits und des Bändermodells andrerseits besteht in der Art des gewählten Einelektronenproblems und in der Art, wie die verschiedenen Lösungen dieses Einelektronenproblems kombiniert werden.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-3-662-01338-0_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Siehe Abb. VI 2.1.

    Google Scholar 

  2. Slater, J. C.: Phys. Rev. Bd. 45 (1934) S. 794 (Natrium).

    Article  MATH  Google Scholar 

  3. Millman, J.: Phys. Rev. Bd. 47 (1935) S. 286 (Lithium).

    Article  Google Scholar 

  4. Seitz, F.: Phys. Rev. Bd. 47 (1935) S. 400 (Lithium).

    Article  MATH  Google Scholar 

  5. Krutter, H. M.: Phys. Rev. Bd. 48 (1935) S. 664 (Kupfer).

    Article  Google Scholar 

  6. Hund, F., u. B. Mrowka: Ber. d. Sächs. Akad. d., Wiss. math.-phys. Kl. Bd. 87 (1935) S. 185 u. S. 325 (Diamant).

    Google Scholar 

  7. Kimball, G. E.: J. chem. Physics Bd. 3 (1935) S. 560 (Diamant.)

    Article  Google Scholar 

  8. Shockley, W.: Phys. Rev. Bd. 50 (1936) S. 754. (NaCl).

    Article  Google Scholar 

  9. Ewing, D. H., u. F. Seitz: Phys. Rev. Bd. 50 (1936) S. 760 (LiF und LiH).

    Article  MATH  Google Scholar 

  10. Herring, C., u. A. G. Hill: Phys. Rev. Bd. 58 (1940) S. 132 (Beryllium).

    Article  MATH  Google Scholar 

  11. Lage, F. G. Von Der, u. H. A. Bethe: Phys. Rev. Bd. 71 (1947) S. 612 (Natrium).

    Article  MATH  Google Scholar 

  12. Das Aufelektron bewegt sich also streng genommen gar nicht in einem festen Potential, sondern in einem „Motiv“, wie wir es von der Behandlung der Bildkraft beim Austritt von Elektronen aus einem glühenden festen Körper her kennen. Siehe z. B. Artikel W. Schottky in Wienharms: Handbuch der Experimentalphysik. Bd. XIII, Tl. 2, S. 254. Leipzig: Akademische Verlagsgesellschaft 1928.

    Google Scholar 

  13. Boer, J. H. De, u. E. J. W. Verwey: Proc. phys. Soc., Lond. Bd. 49 (1935) S. 59.

    Article  Google Scholar 

  14. Schottky, W.: Z. Elektrochem. Bd. 45 (1939) S. 33, namentl. S. 57.

    Google Scholar 

  15. Dressnandt, H.: Z. Phys. Bd. 115 (1940) S. 369.

    Article  Google Scholar 

  16. Wagner, C.: Phys. Z. Bd. 36 (1935) S. 721, auch abgedruckt in Z. techn. Phys. Bd. 16 (1935) S. 327.

    Google Scholar 

  17. Wagner, C., u. E. Koch: Z. phys. Chem. Abt. B Bd. 32 (1936) S. 439.

    Google Scholar 

  18. Peierls, R.: Prcc. Phys. Soc. Lcndon Bd. 49 (1937) S. 72.

    Article  Google Scholar 

  19. Kronig, R. DE L., u. W. G. Penney: Proc. roy. Soc., Lond. Bd. 130 (1931) S. 499.

    Article  Google Scholar 

  20. Morse, P. M.: Phys. Rev. Bd. 35 (1930) S. 1310.

    Article  MATH  Google Scholar 

  21. Strutt, M. J. O.: Lamésche, Mathieusche und verwandte Funktionen in Physik und Technik. Ergebnisse der Mathematik und ihrer Grenzgebiete. 1. Bd., 3. Heft. Berlin: Springer 1932.

    Book  Google Scholar 

  22. Die Dinge liegen ähnlich wie bei dem in § 1 des vorigen Vortrags besprochenen Zwei-Zentren-Ein-Elektronenproblem, das in dem speziellen Fall, daß es sich bei den zwei Zentren um Wasserstoffkerne mit rein Coulombschem Potential handelt, streng gelöst werden kann. Trotzdem zogen wir es vor, eine Näherungslösung zu benutzen, weil dies für den Vergleich mit dem Heitler-London-Verfahren fruchtbarer war.

    Google Scholar 

  23. SLATER, J. C.: Phys. Rev. Bd. 34 (1929) S. 1293.

    Article  MATH  Google Scholar 

  24. BLOCH, F.: Z. Phys. Bd. 52 (1929) S. 555.

    Article  Google Scholar 

  25. Die Richtigkeit von (VII 2.02) bzw. (VII 2.03) wird sich weiter unten noch bestätigen, s. S. 167.

    Google Scholar 

  26. Hier liegen typische Beispiele vor für solche Feststellungen, die für sich allein genommen keinerlei physikalische Bedeutung haben, da sie selbst die willkürliche Zellenzahl G des Grundgebietes enthalten. In Verbindung mit anderen Überlegungen werden sie aber zu Aussagen führen, in denen das willkürliche G nicht mehr vorkommt und die dann von sehr großer physikalischer Bedeutung sind. Siehe z. B. S. 169, Fußnote 1 oder S. 253–254 Gl. (VII 10.07) bis (VII 10.09) oder S. 272–273, Ableitung von Gl. (VIII 1.07).

    Google Scholar 

  27. und ebenso den Energieeigenwert E nicht ändert, wie wir auf S. 168 unten aus Gl. (VII 2.22) folgern werden.

    Google Scholar 

  28. Die tiefere Rechtfertigung dieses Vorgehens liegt darin, daß man auf diese Weise die im Sinne eines RITzschen Verfahrens beste Lösung eines Variationsproblems erhält, das mit der SCHRÖDINGERGLEICHUNG äquivalent ist. Siehe hierzu z. B. F. Hund in Geiger/Scheel: Handbuch der Physik. Bd. XXIV, Tl. 1, S. 575. Berlin: Springer 1933.

    Google Scholar 

  29. In Abb. VII 2.6 ist die Schlußweise von Bloch lediglich bildlich veranschaulicht. Ob die Verhältnisse in einem konkreten Fall so liegen, daß diese Schlußweise quantitativ gerechtfertigt ist, bleibe dahin gestellt. Eine Prüfung dieser Frage führt auf die recht schwierige Untersuchung des Verlaufs des Gitterpotentials und müßte z. B. auch die Fälle unterscheiden, ob es sich bei dem Aufelektron um ein Valenzelektron der äußersten Schale oder um ein stark gebundenes Elektron der inneren Schalen handelt. Gerade bei dem letztgenannten Fall scheint es aber wieder fraglich, ob nicht an Stelle des Hund-Mulliken-Verfahrens besser eine Heitler-London-Näherung anzuwenden wäre. Es muß an dieser Stelle betont werden, daß es sich bei der Blochschen Nähe — rung um die historisch erste Behandlung von Kristallelektronen handelt, bei der viel mehr Wert auf die qualitativen Züge zu legen ist, während den Ergebnissen kaum eine quantitative Bedeutung beigelegt werden kann.

    Google Scholar 

  30. Siehe hierzu beispielsweise S. Flügge u. H. Marschall Rechenmethoden der Quantentheorie. S. 162/164. Berlin/Göttingen/Heidelberg: Springer 1947

    MATH  Google Scholar 

  31. oder auch H. A. Bethe in Geiger/Scheel: Handbuch der Physik. Bd. XXIV, Ti. 1, S. 335. Berlin: Springer 1933. Dort auch Näheres über die Bedeutung der Austauschenergie für die Platzwechselhäufigkeit.

    Google Scholar 

  32. In dieser Form ist die Aussage von der willkürlichen Zellenzahl G des Grundgebiets unabhängig und wird dadurch erst physikalisch bedeutungsvoll.

    Google Scholar 

  33. Dies wird erst in § 10 angegriffen werden.

    Google Scholar 

  34. Wie bei der Verwendung dieser Aussage in Kap. VIII, § 1 das Volumen des willkürlichen Grundgebietes herausfällt, s. S. 272–273 Ableitung von Gl. (VIII 1.07).

    Google Scholar 

  35. Siehe z. B. H. A. Bethe in Geiger/Scheel: Bd. XXIV, Tl. 2, S. 401/404.

    Google Scholar 

  36. Näheres zu diesem Begriff s. S. 259–261.

    Google Scholar 

  37. H. A. Bethe gibt in Geiger/Scheel, Bd. XXIV, Tl. 2, S. 397 eine Formel (12.17) für das Energiespektrum eines Gitters mit Basis an, bei der offenbar auf den oben erwähnten Umstand keine Rücksicht genommen worden ist.

    Google Scholar 

  38. Siehe aber Fußnote 2 auf S. 182.

    Google Scholar 

  39. Wir verweisen in diesem Zusammenhang auf die ausgezeichneten Darstellungen von P. P. Ewald: Kristalle und Röntgenstrahlen. Berlin: Springer 1923 und in Geiger-Scheel: Handbuch der Physik. Bd. XXIII, Tl. 2.

    Book  MATH  Google Scholar 

  40. Oder in Sonderfällen in der 4. Zone.

    Google Scholar 

  41. Eine sehr anschauliche Einführung der Millerschen Indices gibt P. P. Ewald: Kristalle und Röntgenstrahlen. S. 20 u. 26. Berlin: Springer 1923.

    Book  MATH  Google Scholar 

  42. Beweis s. z. B. P. P. Ewald: Kristalle und Röntgenstrahlen. S. 249/250. Berlin: Springer 1923.

    Book  MATH  Google Scholar 

  43. Für einen von Ewald ohne Beweis benutzten zahlentheoretischen Satz s. Z. B. B. L. Van Der Waerden: Moderne Algebra. 1. Teil, S. 61. Berlin: Springer 1937 oder Arnold Scholz: Einführung in die Zahlentheorie> Sammlung Göschen, Bd. 1131 (1939) S. 22.

    Google Scholar 

  44. Wir haben zu Beginn dieses § 3 und in Abb. VII 3.1 als Objekte der Brillouinschen Näherung Elektronen hoher Gesamtenergie angegeben. Da sich aber ein Elektron in einem Gebiet ortsunabhängiger potentieller Energie wie ein freies Elektron benimmt, werden die für gebundene Elektronen charakteristischen Eigenschaften durch die örtlichen Schwankungen der potentiellen Energie hervorgerufen. Schwach gebundene Elektronen sind hiernach solche, die sich in einem annähernd konstanten Potentialfeld bewegen und tatsächlich ist die entscheidende Näherungsannahme bei Brillouin die, daß der Wechselanteil der potentiellen Energie als kleine Störung betrachtet werden darf.

    Google Scholar 

  45. Siehe Fußnote 3 auf Seite 183.

    Google Scholar 

  46. Um auf die Darstellung VII 3.10b zu kommen, muß man in diesem Störungsverfahren von zwei durch die Rechnung gelieferten Eigenwerten jeweils einen unterdrücken, wofür eigentlich gar keine Veranlassung besteht.

    Google Scholar 

  47. Unsere räumliche Darstellung dieses zweidimensionalen Falles entspricht also der Abb. VII 3.10b des eindimensionalen Falles. Man darf sich aber dadurch nicht zu dem Irrtum verleiten lassen, daß die Möglichkeit der Darstellung VII 3.10 c eine besondere Eigentümlichkeit des eindimensionalen Falles wäre. Bereits auf S. 170 und in Abb. VII 2.9 wurde darauf hingewiesen, daß auch in mehrdimensionalen Fällen der Übergang von dem Wellenvektor k zu einem Wellenvektor (math) möglich ist, ohne daß sich Eigenfunktion und Eigenwert ändert.

    Google Scholar 

  48. Floquet, G.: Ann. Ecole norm. Bd. 12 (1883) S. 47.

    MathSciNet  MATH  Google Scholar 

  49. Kramers, H. A.: Physica, Haag Bd. 2 (1935) S. 483.

    Article  Google Scholar 

  50. Wigner, E., u. F. Seitz: Phys. Rev. Bd. 43 (1933) S. 804.

    Article  Google Scholar 

  51. Slater, J. C.: Phys. Rev. Bd. 45 (1934) S. 794.

    Article  MATH  Google Scholar 

  52. Herring, C., u. A. G. Hill: Phys. Rev. Bd. 58 (1940) S. 132.

    Article  MATH  Google Scholar 

  53. Siehe Fußnote 1 auf S. 153.

    Google Scholar 

  54. Beim freien Elektron ist also zufälligerweise ein Zustand scharf definierter Gesamtenergie auch ein Zustand scharf definierten Impulses. Siehe hierzu vielleicht E. Fues in Wien/Harms: Handbuch der Experimentalphysik, Ergänzungswerk. S. 212. Leipzig: Akad. Verlagsges. 1935

    Google Scholar 

  55. und H. A. Kramers: Die Grundlagen der Quantentheorie in Eucken-Wolf: Handund Jahrbuch der Chemischen Physik. S. 138 u. 162. Leipzig: Akad. Verlagsges. 1938.

    Google Scholar 

  56. Siehe Fußnote 1 auf S. 193.

    Google Scholar 

  57. Sommerfeld, A.: Atombau und Spektrallinien. Bd. II, S. 8, Gl. (14). Braunschweig: Vieweg & Sohn 1944.

    Google Scholar 

  58. Siehe auch W. Shockley: Electrons and holes in Semiconductors. S. 160, Fig. 6.2. New York: Van Nostrand Company 1950.

    Google Scholar 

  59. S. z. B. E. Fues in Wien-Harms: Handbuch der Experim.-Physik. Ergänzungswerk S. 150, Gl. (5.6). Leipzig: Akadem. Verlagsges. 1935.

    Google Scholar 

  60. Siehe Gl. (5.5) auf S. 149 des in Fußnote 1 zitierten Werkes.

    Google Scholar 

  61. Die Begründung ist dieselbe wie die auf S. 200 unten gebrachte Begründung für Gl. (VII 6.09).

    Google Scholar 

  62. Hierfür würde dann die Gl. (VII 6.17) gebraucht. Die obige Darstellung folgt übrigens W. V. Houston in Phys. Rev. Bd. 57 (1940) S. 184.

    Article  MathSciNet  Google Scholar 

  63. In diesem Zusammenhang sind noch zu nennen: F. Bloch: Z. Phys. Bd. 52 (1928) S. 555

    MATH  Google Scholar 

  64. R. Peierls: Z. Phys. Bd. 53 (1929) S. 255 H. A. Bethe im Handbuch der Physik. Bd. XXIV, Tl. 2, S. 507

    Article  MATH  Google Scholar 

  65. H. Jones u. C. Zener: Proc. roy. Soc., Lond. Bd. 144 (1934) S. 101–117

    Article  MATH  Google Scholar 

  66. J. C. Slater, Rev. Modern Phys. Bd. 6 (1934) S. 209, namentlich S. 259

    Article  Google Scholar 

  67. A. H. Wilson: The Theory of Metals. Cambridge: Univ. Press. 1935. In den Büchern von Fröhlich, Seitz und Mott-Jones wird für (VII 6.12) ein sehr einfacher Beweis mit Hilfe eines Energiesatzes gegeben. Wir befürchten allerdings, daß bei diesem sehr einfachen Beweis ein sehr wichtiger Teil der zu beweisenden Tatsache — nämlich die dauernde Repräsentation des Kristallelektrons durch eine Lösung (math) der zusatzkraftfreien stationären Schrödinger- Gleichung — bereits in die Formulierung dieses Energiesatzes gesteckt wird und die weiteren dortigen Ausführungen nur die Art der Zeitabhängigkeit von k präzisieren. Ein weiterer Einwand gegen diese Art der Beweisführung s.

    Google Scholar 

  68. W. Shockley: Electrons and Holes in Semiconductors. S. 424, 425. New York: Van Nostrand Co. 1950.

    Google Scholar 

  69. Zu diesem ganzen Fragenkomplex s. auch D. Pfirsch u. E. Spenke: Z. Phys. Bd. 137 (1954) S. 309.

    Article  MATH  Google Scholar 

  70. Neuerdings hat sich aber gezeigt, daß für gewisse Fragestellungen (Zusammenhang mit dem Ehrenfestschen Theorem) auch schon bei schwachen Kräften die Übergänge in die höheren Bänder berücksichtigt werden müssen [s. D. Pfirsch u. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, Oegan JP, Deng H-X, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergth R, Hung W-Y, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362 : 5962: Z. Phys. Bd. 137 (1954) S. 309].

    Article  MATH  Google Scholar 

  71. In dieser Allgemeinheit gilt diese scheinbar so selbstverständliche Aussage nicht. In dreidimensionalen Gittern können an den Bandgrenzen recht komplizierte Verhältnisse auftreten. Wir erwähnten das schon auf S. 170 Mitte in Hinweis auf das kubisch-flächenzentrierte Gitter.

    Google Scholar 

  72. ZENER, C.: Proc. roy. Soc., Lond. A Bd. 145 (1934) S. 523.

    Article  Google Scholar 

  73. Es sei an dieser Stelle daran erinnert, daß eine unbegrenzte ebene Welle mit endlicher Amplitude wegen der Normierungsschwierigkeit im unbegrenzten Raum am einfachsten nicht als Repräsentation eines Elektrons, sondern als Repräsentation eines Strahles von vielen gleich schnellen Elektronen aufgefaßt wird. Das Amplitudenquadrat dieser Welle ist dann ein Maß für die Intensität dieses „Kathodenstrahles“.

    Google Scholar 

  74. Der Einfachheit halber betrachten wir das eindimensionale Problem. Weshalb für die Energie jetzt die Type E an Stelle von E gewählt wird, s. S. 214.

    Google Scholar 

  75. Siehe Bethe in Geiger/ Scheel, Bd. XXIV, Tl. 2, S. 423.

    Google Scholar 

  76. Die Abb. VII 3.10 bis 3.12 wurden bisher immer aufgefaßt als Darstellungen der Abhängigkeit der Kristallenergie E von der Wellenzahl k. Genau so stellen sie aber die Umkehrfunktion — Wellenzahl k in Abhängigkeit von der Kristallenergie Ekristall — dar.

    Google Scholar 

  77. Die Zenersche Lösung entspricht dem nullten Schritt eines W.-K.-B.-Verfahrens. Bezüglich des W.-K.-B.-Verfahrens s. z. B. W. Weizel: Lehrbuch der theoretischen Physik. Bd. II, S. 1010. Berlin/Göttingen/Heidelberg: Springer 1950.

    Google Scholar 

  78. Hier setzt eine Kritik von F. Cernuschi ein. Proc. Cambridge Phil. Soc. Bd. 32 (1936) S. 276.

    Article  MATH  Google Scholar 

  79. Bei Zener heißt es hier fälschlicherweise a vor der Wurzel. Das Zenersehe Endergebnis ist aber wieder richtig.

    Google Scholar 

  80. Auf S. 205 wurde bereits festgestellt, daß eine Weiterverfolgung der im vorigen § 6 wiedergegebenen Ansätze von Houston auch die Frage der Zener — übergänge beantworten muß. Houston selbst hai auf diese Weise ein von (VII 7.08) um den Faktor (2π)2 abweichendes Ergebnis erhalten. Tatsächlich liefert dieser Weg aber ebenfalls das Zenersche Ergebnis (VII 7.08) bis auf den gänzlich 2 unwesentlichen (-). Das ist namentlich deswegen befriedigend, weil die Zenersche Rechnung in mancher Beziehung nicht völlig überzeugt. Z. B. geht der Zenersche Ansatz (VII 7.03) im Gegensatz zu den Houstonschen Ansätzen des § 6 beim Grenzübergang von einem Kristallelektron zu einem freien Elektron (Amplitude der Potentialschwankungen — 0) nicht in eine strenge Lösung über, wie man beim Versuch einer Verifikation ohne weiteres feststellt. Damit dürfte zusammenhängen, daß in den Zenerschen Betrachtungen eine an der oberen Bandgrenze reflektierte Welle gar nicht auftritt.

    Google Scholar 

  81. Franz, W.: Ergebn. exakt. Naturw. Bd. 27 (1953) S. 16, G1. (34).

    Google Scholar 

  82. Siehe H. A. Bethe in Geiger/Scheel: Handbuch der Physik. Bd. XXIV, Tl. 2, S. 439, Gl. (19.12) u. (19.13).

    Google Scholar 

  83. Fröhlich, H.: Elektronentheorie der Metalle. S. 44 unten, Gl. (24), Bd. XVIII der Sammlung Struktur und Eigenschaften der Materie in Einzeldarstellungen. Berlin: Springer 1936.

    MATH  Google Scholar 

  84. Siehe z. B. K. B. McAfee, E. J. Ryder, W. Shockley, M. Sparks: Phys. Rev. Bd. 83 (1951) S. 650. In Gl. (1) dieser Arbeit ist allerdings der Exponent um einen Faktor 2 zu groß. Es handelt sich dabei anscheinend aber nur um einen Druckfehler; denn in der Zahlenwertgleichung (3) loc. cit. hat der Exponent wieder die richtige Größe.

    Article  Google Scholar 

  85. Wir haben S. 10ff. u. 16 gesehen, daß in einem isolierenden Kristall ein vollbesetztes und daher nicht leitendes „Valenzband“ und ein leeres „Leitungsband“ vorliegt. (Siehe hierzu auch S. 253 ff. und S. 284ff.) Der isolierende Kristall kann nur dadurch leitend werden, daß Elektronen in das leere Leitungsband gebracht werden. Dies könnte durch den Zener-Effekt von gewissen Feldstärken ab erfolgen. Da der Effekt mit wachsender Feldstärke sehr plötzlich einsetzt (Abb. VII 7.3) würde der Kristall oberhalb gewisser Feldstärken sehr plötzlich und in sehr starkem Maße leitend werden, d. h. das Phänomen des „Durchschlags“ zeigen.

    Google Scholar 

  86. Siehe auch G. K. McKay u. K. B. McAfee: Phys. Rev. Bd. 91 (1953) S. 1079

    Article  Google Scholar 

  87. und G. K. McKay: Phys. Rev. Bd. 94 (1954) S. 877.

    Article  Google Scholar 

  88. Die Größe h übernimmt also die Rolle eines verallgemeinerten Impulses, weshalb dafür auch in manchen Darstellungen der Name Kristallimpuls gewählt wird (W. Shockley: Electrons and Holes in Semiconductors. S. 143. Toronto, New York, London: D. Van Nostrand Comp., Inc. 1950.) Für ein freies Elektron wird der quantenmechanische Mittelwert des Impulses, für den wir ja die Formel = grad>e E (k) abgeleitet haben, tatsächlich auch identisch mit der Größe h k s. Gl. (VII 6.31)].

    Google Scholar 

  89. Die Situation wird dadurch nicht einfacher, daß die weiter unten wiederzugebende Rechnung für den Fall des elektromagnetischen Wechselfeldes zunächst formal den Grenzübergang „Kreisfrequenz — 0 gestattet und dabei die Übergänge zu Nachbarzuständen desselben Bandes nach wie vor verboten bleiben. Wir werden bei Durchführung der Rechnung nachdrücklich darauf hinweisen, auf Grund welcher Anfangsansätze eine derartige formale Durchführung des Grenzübergangs „Kreisfrequenz 0“ unzulässig ist. Der Gegensatz mildert sich aber schon dadurch in gewisser Weise, daß auch ein zeitunabhängiges Feld Übergänge in höhere Bänder auslöst; das wurde bisher allerdings nur bei starken äußeren Feldern beachtet (Zener-Effekt § 7). In letzter Zeit hat sich aber gezeigt, daß diese Übergänge in höhere Bänder auch bei schwachen zeitunabhängigen Feldern für gewisse Fragestellungen berücksichtigt werden müssen. (Siehe D. Pfirsch u. E. Spenke: Z. Phys. Bd. 137 (1954) S. 309.)

    Article  MATH  Google Scholar 

  90. Hier erscheint vielleicht ein Vergleich der Kreisfrequenz ω des Wechselfeldes mit der zum Übergang „Leitungsband Valenzband“ gehörigen Kreisfrequenz E cv/ħ eher angemessen.

    Google Scholar 

  91. Siehe z. B. H. Fröhlich: Elektronentheorie der Metalle. S. 354 u. 355. Berlin: Springer 1936.

    MATH  Google Scholar 

  92. Siehe z. B. W. Weizel: Lehrbuch der theoretischen Physik. Bd. II, S. 881, Gl. (24). Berlin/Göttingen/Heidelberg: Springer 1950.

    Google Scholar 

  93. Der zu Beginn des § 6 behandelte Fall des freien Elektrons unter der Wirkung einer äußeren Kraft F ist scheinbar ein Gegenbeispiel. Auch hier enthält die Schrödinger-Gleichung (VII 6.06) ein nicht periodisches Glied. Gleichwohl ist die dort durch Verifikation bestätigte Lösung (VII 6.07) in jedem Zeitmoment t periodisch. Dieses Gegenbeispiel ist trotzdem nicht stichhaltig, da die Periode zeitabhängig ist, während — wie schon oben betont — (VII 8.09) in jedem Zeitmoment als Periode das feste, unveränderliche Grundgebiet hat.

    Google Scholar 

  94. Siehe Anm. 1, Seite 227.

    Google Scholar 

  95. Das ist zu Beginn des Vorgangs bestimmt eine Zeitlang der Fall. Diese ,Kleinheit der Störung“ bleibt um so länger erhalten, je kleiner die Kraftamplitude F ist.

    Google Scholar 

  96. Bei der Absorption von Röntgen-Strahlen gilt das freilich wegen der kleinen Wellenlänge der Röntgen-Strahlen nicht mehr.

    Google Scholar 

  97. Außerdem würde bei Elektronengeschwindigkeiten in der Größenordnung der Lichtgeschwindigkeit die in den bisherigen Ausführungen benutzte einfache Schrödinger-Gleichung nicht mehr ausreichen. Alle abgeleiteten Beziehungen würden sich sowieso relativistisch modifizieren.

    Google Scholar 

  98. Siehe hierzu vielleicht: N. Riehl u. M. Schön: Z. Phys. Bd. 114 (1939) S. 682, namentlich S. 687.

    Article  MATH  Google Scholar 

  99. Oder N. Riehl: Physik und technische Anwendung der Lumineszenz. S. 103ff. Bd. III der Sammlung Technische Physik in Einzeldarstellungen. Berlin: Springer 1940.

    Google Scholar 

  100. Siehe zu den Begriffen der „Fehlordnung“ und der „Baufehler“ Helmut G. F. Winkler: Struktur und Eigenschaften der Krystalle. Berlin/Göttingen/ Heidelberg: Springer 1950.

    Google Scholar 

  101. Als Stoßpartner dachte man damals naturgemäß an die Gitteratome und die anderen Elektronen. Zu welchen Schwierigkeiten das führte, werden wir später auf S. 239 sehen.

    Google Scholar 

  102. Diese nun einmal leider eingebürgerte Bezeichnung ist eigentlich wenig glücklich. Es handelt sich ja um die zwischen zwei Stoßprozessen verstreichende Zeit für die Zurücklegung einer freien Weglänge und nicht um die Dauer des Stoßprozesses selbst. Eine Bezeichnung wie „freie Flugzeit“ oder „free mean time“ erscheint in dieser Beziehung wegen ihrer Parallelität zu „free mean path“ sehr viel glücklicher.

    Google Scholar 

  103. Die „mittlere“ Stoßzeit τ wäre hiernach gleich dem halbem arithmetischen Mittelwert der einzelnen Stoßzeiten (math). Ein derartiger im Rahmen dieser rohen Betrachtung gewonnener Faktor ½ ist aber nicht ernst zu nehmen. In Wirklichkeit sind viel kompliziertere Mittelbildungen vorzunehmen, bis von einer endgültigen mittleren Stoßzeit τ die Rede sein kann, und dabei ändern sich solche Zahlenfaktoren noch mannigfaltig. Für die folgenden skizzenhaften Bemerkungen genügt es, τ zunächst einfach mit dem arithmetischen Mittelwert τü zu identifizieren.

    Google Scholar 

  104. Die metallischen Beweglichkeiten liegen tatsächlich zwischcn 10 und 100 (math) Siehe z. B. F. SEITZ: The Modern Theory of Solids. S. 183. New York: McGraw-Hill Book Company 1940.

    MATH  Google Scholar 

  105. Zu diesem Wert s. Gl. (VIII 4.09).

    Google Scholar 

  106. Seitz, F.: The Modern Theory of Solids. S. 183. New York: McGraw-Hill Book Company 1940.

    MATH  Google Scholar 

  107. Ryder, E. J., and W. Shockley: Phys. Rev. Bd. 81 (1951) S. 139 u. 140.

    Article  Google Scholar 

  108. Shockley, W.: Bell Syst. techn. J. Bd. XXX (1951) S. 990.

    Google Scholar 

  109. Bei Germanium sogar bis etwa 500 Gitterkonstanten.

    Google Scholar 

  110. Wenn man hier einen Ausweg in der Form sucht, daß die Wirkungssphäre der Atome bei der Wechselwirkung mit ihren Nachbarn und daher bei den Gitterbindungsfragen viel größer ist als der Wirkungsquerschnitt gegenüber schnellen Leitungselektronen, so ist dies nur eine andere Formulierung des für klassische Vorstellungen unverständlichen Sachverhalts.

    Google Scholar 

  111. Paull, W.: Z. Phys. Bd 41 (1927) S. 81.

    Article  Google Scholar 

  112. Sommerfeld, A.: Naturwiss. Bd. 15 (1927) S. 825; Bd. 16 (1928) S. 374.

    Article  MATH  Google Scholar 

  113. Pauli machte die Temperaturunabhängigkeit und Schwäche des Paramagnetismus der Alkalien verständlich, Sommerfeld den Ausfall der Leitungselektronen für die spezifische Wärme des Festkörpers (neben anderen Ergebnissen).

    Google Scholar 

  114. Bloch, F.: Z. Phys. Bd. 52 (1928) S. 555; Bd. 57 (1929) S. 545.Kurz vorher hatte der Sommerfeld-Schüler W. V. Houston die Streuung der elektronenwellen analog zur DEBYESCHEN Streuung von Röntgen- Strahlen durch die thermischen Dichteschwankungen im Kristall behandelt. Z. Phys. Bd. 48 (1928) S. 449.

    MATH  Google Scholar 

  115. Conwell, E., u. V. F. Weisskopf: Phys. Rev. Bd. 69 (1946) S. 258; Bd. 77 (1950) S. 388.

    Google Scholar 

  116. Gordon, W.: Z. Phys. Bd. 48 (1928) S. 180.

    Article  MATH  Google Scholar 

  117. Mott, N. F.: Proc. roy. Soc., Lond. (A) Bd. 118 (1928) S. 542.

    Article  MATH  Google Scholar 

  118. Temple, S.: Proc. roy. Soc., Lond. (A) Bd. 121 (1928) S. 673.

    Article  MATH  Google Scholar 

  119. Beim Vergleich der höchsten akustischen und der niedrigsten optischen Schwingung verwischt sich also der Unterschied zwischen akustischen und optischen Schwingungen, der beim Vergleich tiefer und mittlerer akustischer Schwingungen mit den optischen Schwingungen noch offensichtlich ist. Siehe im übrigen zu diesen Schwingungstypen ausführlicher z. B. Walter Weizel: Lehrbuch der theoretischen Physik. Bd. II, S. 1385. Berlin/Göttingen/Heidelberg: Springer 1950.

    Google Scholar 

  120. Siehe S. 13–14 u. Abb. I 2.9.

    Google Scholar 

  121. In diesem Zusammenhang spielen die sogenannten Peierlsschen Umklapp — prozesse eine größere Rolle. Siehe hierzu H. A. Bethe in Geiger/Scheel, Bd. XXIV, Tl. 2, S. 536.

    Google Scholar 

  122. Shockley, W., u. J. Bardeen: Phys. Rev. Bd. 77 (1950) S. 407.

    Article  MathSciNet  Google Scholar 

  123. Shockley, W.: Electrons and Holes in Semiconductors. S. 264ff.

    Google Scholar 

  124. Begründung s. Gl. (VIII 4.27).

    Google Scholar 

  125. Begründung s. Gl. (VIII 4.09).

    Google Scholar 

  126. Gl. (VII 6.12).

    Google Scholar 

  127. Zwei wegen des Spins !

    Google Scholar 

  128. Vielfach wird bei einer bildlichen Darstellung der Funktion f(E) die Energie E als Abszisse und f (E) als Ordinate aufgetragen. Da aber bei einer späteren Verwendung von f(E) in dem Energietermschema die Energie stets auf der vertikalen Achse aufgetragen wird, wurde das hier bei der Darstellung von f (E) auch gemacht. Wir kommen dann gleich zu der später so wichtig werdenden waagerecht verlaufenden „Fermi-Kante E F “.

    Google Scholar 

  129. Auf der Ordinatenachse der linken Darstellung in Abb. VII 10.1 ist die Differenz EE F , nicht die Energie E selbst aufgetragen. Man darf sich also durch diese Darstellung nicht zu dem Mißverständnis verleiten lassen, daß die Fermi-Kante temperaturunabhängig wäre. Dies ist zwar bei Metallen annähernd, aber auch nicht streng der Fall. Bei Halbleitern dagegen ist das Fermi-Niveau im allgemeinen sogar stark temperaturabhängig.

    Google Scholar 

  130. Vertauschen zwei Elektronen ihre Plätze, so ändert die Eigenfunktion des Mehr-Elektronen-Problems (in nullter Näherung die sogenannte Slater-Determinante) nur ihr Vorzeichen. Das bedeutet aber nicht eine Änderung der „physikalischen Situation“, des Zustandes des Viel-Elektronen- Systems. Das wellenmechanische Äquivalent der „korpuskularen“ Behauptung von der Ununterscheidbarkeit der Elektronen ist das Axiom, daß von allen Lösungen der Schrödinger-Gleichung eines Vielteilchen-Problems nur die symmetrische oder die antisymmetrische Lösung physikalische Realität haben und deshalb in Betracht gezogen zu werden brauchen. Daß sich von diesem Standpunkt aus die Abzählungsvorschriften der Bose- und der Fermi- Statistik einfach als Abzählung der sym — metrischen bzw. der antisymmetrischen Eigenfunktionen eines Viel-Elektronen-Problems darstellen, s. z. B. bei L. Nordheim in Müller-Pouillet: Lehrbuch der Physik. Bd. IV, Tl. 4, S. 251.

    Google Scholar 

  131. Nyquist, H.: Phys. Rev. Bd. 32 (1928) S. 110. Daß wir das mittlere Stromschwankungsquadrat J2̄ eines kurzgeschlossenen Leiters heranziehen und nicht das mittlere Spannungsquadrat u2̄ an den Enden eines Leiters mit offenen Klemmen (Leerlauf), ist damit begründet, daß in letzterem Fall eine primäre spontane Schwankung ein elektrisches Feld in dem Leiter erzeugt. Es liegt dann nicht mehr der von uns betrachtete kräftefreie Fall vor. Im übrigen ist für die folgende Argumentation wichtig, daß das Theorem von Nyquist mit thermodynamischen Mitteln bewiesen wird, so daß es von modellmäßigen Voraussetzungen weitgehend frei ist. Es kann also mit voller Beweiskraft auf ein so spezielles Modell wie das Bändermodell eines Isolators angewendet werden.

    Article  Google Scholar 

  132. Ein Quantenzustand kann wegen des Elektronenspins mit zwei Elektronen besetzt werden.

    Google Scholar 

  133. Die „Gestalt“ der k-Verteilung ist in dem eindimensionalen Beispiel der Abb. VII 10.4 einfach die Breite des besetzten k-Intervalls.

    Google Scholar 

  134. Siehe z. B. J. D’ans u. E. Lax: Taschenbuch für Chemiker u. Physiker. S. 164 bzw. 178. Berlin: Springer 1943.

    Google Scholar 

  135. Siehe z. B. P. P. Ewald: Kristalle u. Röntgenstrahlen. S. 150. Berlin: Springer 1923.

    Book  Google Scholar 

  136. S. 118 des in Fußnote 1 auf S. 259 zitierten Taschenbuches.

    Google Scholar 

  137. Genauer: alle und nur alle Gitterpunkte. Siehe hierzu die Ausführungen auf S. 260 unten über das Diamantgitter und die zugehörige Abb. VII 11.4.

    Google Scholar 

  138. Ewald, P. P.: S. 272 des in Fußnote 1 zitierten Werkes.

    Google Scholar 

  139. Da es sich, wie immer beim Bändermodell, um eine Behandlung des EinElektronenproblems (im periodischen Potentialfeld) handelt, kann die Lösung im Grenzfall getrennter Moleküle auch nur mit den Eigenfunktionen des Molekülions verglichen werden, aus denen das Hund-Mulliken-Verfahren dann erst die Mehrelektronen-Eigenfunktionen des Moleküls durch Linearkombinationen aufbaut. Siehe im übrigen die Unterschrift zu Abb. VII 11.7.

    Google Scholar 

  140. Hund, F., u. B. Mrowka: Ber. d. Sächs. Akad. d. Wiss. math.-phys. Kl. Bd. 87 (1935) S. 185 u. 325, besonders S. 192. Da im einzelnen C-Atom nicht nur zwei 2s-Elektronen, sondern auch zwei 2p-Elektronen vorhanden sind, liegt es nahe, nach der Durchführung der Blochschen Näherung mit p-Funktionen zu fragen. Hund und Mrowka haben sich aber bei Durchführung der Blochschen Näherung nur auf s-Funktionen beschränkt und ziehen erst bei der Wignersertzschen Zellularmethode p-Funktionen heran. Gl. (VII 11.02) gibt also nur die Bandaufspaltung des atomaren 2s-Niveaus wieder und besagt nichts über die Bandaufspaltung des darüber liegenden atomaren 2p-Niveaus.

    Google Scholar 

  141. Siehe Anm. 1, Seite 264.

    Google Scholar 

  142. Siehe z. B. Artikel A. Sommerfeld u. H. A. Bethe in Geiger/Scheel: Handbuch der Physik. Bd. XXIV, Tl. 2, S. 387, Gl. (12.15). Berlin: Springer 1933.

    Google Scholar 

  143. Ewald, P. P.: Kristalle und Röntgenstrahlen. S. 91. Berlin: Springer 1923.

    Book  MATH  Google Scholar 

  144. Die Bedingung dafür ist, daß der „Strukturfaktor“ (math) für die Reflexionen an der Ebenenschar h verschwindet. Der Summationsindex t = 1, 2,..., m kennzeichnet in diesem Ausdruck die einzelnen Teilgitter; die m Vektoren rt spannen innerhalb einer Elementarzelle die Basis auf. Siehe z. B. P. P. Ewald, S. 279 des in Fußnote 1 zitierten Werkes.

    Google Scholar 

  145. Siehe N. F. Mott u. H. Jones: Properties of Metals and Alloys. S. 159. Oxford: Clarendon Press 1936.

    Google Scholar 

  146. Hund, F., u. B. Mrowka: Ber. d. Sächs. Akad. d. Wiss. math.-phys. Kl. Bd. 87 (1935) S. 185 u. 325.

    Google Scholar 

  147. Kimball, G. E.: J. chem. Physics Bd. 3 (1935) S. 560.

    Article  Google Scholar 

  148. Großangelegte Untersuchungen über die Bänderstruktur der Diamantgitter hat in den letzten Jahren Herman (Radio Corporation) unternommen. Siehe F. Herman: Phys. Rev. Bd. 88 (1952) S. 1210

    Article  Google Scholar 

  149. F. Herman: Phys. Rev. Bd. 93 (1954) S. 1214

    Article  MATH  Google Scholar 

  150. F. Herman und J. Callaway: Phys. Rev. Bd. 89 (1953) S. 518

    Article  Google Scholar 

  151. F. Herman, J. Callaway u. F. S. Acton: Phys. Rev. Bd. 95 (1954) S. 371.

    Article  MATH  Google Scholar 

  152. Siehe J. D’ans u. E. Lax: Taschenbuch für Chemiker u. Physiker. S. 180.

    Google Scholar 

  153. Hund, F.: Phys. Z. Bd. 36 (1935) S. 725, namentl. S. 728; auch abgedruckt in Z. techn. Phys. Bd. 16 (1935) S. 331, namentl. S. 334.

    MATH  Google Scholar 

  154. Siehe Anm.4, Seite 268.

    Google Scholar 

  155. Boer, J. H. De, u. E. J. W. Verwey: Proc. phys. Soc., Lond. Bd. 49 (1935) S. 59.

    Article  Google Scholar 

  156. Schottky, W.: Z. Elektrochem. Bd. 45 (1939) S. 33, namentl. S. 57.

    Google Scholar 

  157. Dressnandt, H.: Z. Phys. Bd. 115 (1940) S. 369.

    Article  Google Scholar 

  158. Wagner, C.: Phys. Z. Bd. (1935) S. 721; auch abgedruckt in Z. techn. Phys. Bd. 16 (1935) S. 327.

    Google Scholar 

  159. Wagner C., u. E. Koch: Z. phys. Chem. Abt. B Bd. 32 (1936) S. 439.

    Google Scholar 

  160. Peierls, R.: Proc. phys. Soc., Lond. Bd. 49 (1937) S. 72. Bei der Bewertung der bisherigen experimentellen Befunde an diesen Verbindungen dürfte man niemals aus den Augen verlieren, daß die Herstellung einwandfreier Proben wegen der Abweichungen von der stöchiometrischen Zusammensetzung, wegen inhomogenen Aufbaues der Proben und wegen des polykristallinen Materials sehr schwierig ist. In den oben erwähnten Fehlschlüssen über den Leitungscharakter des Si und des Ge haben wir aber gesehen, zu welchen fundamentalen Irrtümern Messungen an nicht einwandfreien Proben führen können.

    Article  Google Scholar 

  161. Wigner, E., u. F. Seitz: Phys. Rev. Bd. 43 (1933) S. 804.

    Article  Google Scholar 

  162. Slater, J. C.: Phys. Rev. Bd. 45 (1934) S. 794.

    Article  MATH  Google Scholar 

  163. Die neuere Entwicklung auf diesem Gebiet findet der Leser zusammengestellt bei G. V. Raynor: Reports on progress in Physics. Bd. XV (1952) S. 173 (Physical Society, London).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1955 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spenke, E. (1955). Das Bändermodell. In: Elektronische Halbleiter. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01338-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01338-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01339-7

  • Online ISBN: 978-3-662-01338-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics